嵌入式毂节点刚度及其单层球面网壳承载力研究

张晓磊, 李会军, 陈旭, 朱志强, 喻晓晨

张晓磊, 李会军, 陈旭, 朱志强, 喻晓晨. 嵌入式毂节点刚度及其单层球面网壳承载力研究[J]. 工程力学, 2022, 39(9): 179-190. DOI: 10.6052/j.issn.1000-4750.2021.05.0388
引用本文: 张晓磊, 李会军, 陈旭, 朱志强, 喻晓晨. 嵌入式毂节点刚度及其单层球面网壳承载力研究[J]. 工程力学, 2022, 39(9): 179-190. DOI: 10.6052/j.issn.1000-4750.2021.05.0388
ZHANG Xiao-lei, LI Hui-jun, CHEN Xu, ZHU Zhi-qiang, YU Xiao-chen. RESEARCH ON STIFFNESS OF HUB-SHAPE INLAY JOINT AND BEARING CAPACITY OF SINGLE-LAYER SPHERICAL RETICULATED SHELL[J]. Engineering Mechanics, 2022, 39(9): 179-190. DOI: 10.6052/j.issn.1000-4750.2021.05.0388
Citation: ZHANG Xiao-lei, LI Hui-jun, CHEN Xu, ZHU Zhi-qiang, YU Xiao-chen. RESEARCH ON STIFFNESS OF HUB-SHAPE INLAY JOINT AND BEARING CAPACITY OF SINGLE-LAYER SPHERICAL RETICULATED SHELL[J]. Engineering Mechanics, 2022, 39(9): 179-190. DOI: 10.6052/j.issn.1000-4750.2021.05.0388

嵌入式毂节点刚度及其单层球面网壳承载力研究

基金项目: 国家自然科学基金项目(51408490);陕西省自然科学基础研究计划项目(2022JM-234);中央高校基本科研业务费专项资金项目(2452020168);教育部产学合作协同育人项目(202002116001);国家级大学生创新创业训练计划项目(S202010712197)
详细信息
    作者简介:

    张晓磊(1996−),男,河北邯郸人,硕士生,主要从事大跨度空间钢结构的研究(E-mail: zxl5242@163.com)

    陈 旭(2000−),男,陕西延安人,本科生,主要从事大跨度空间钢结构的研究(E-mail: chenxu865@126.com)

    朱志强(1986−),男,陕西绥德人,工程师,学士,主要从事工程管理及工程质量监督研究(E-mail: 860616939@qq.com)

    喻晓晨(1996−),女,陕西安康人,硕士生,主要从事网壳结构半刚性节点方向的研究(E-mail: yxc@nwafu.edu.cn)

    通讯作者:

    李会军(1981−),男,陕西榆林人,副教授,博士,硕导,主要从事大跨度空间钢结构的研究(E-mail: lihj@nwsuaf.edu.cn)

  • 中图分类号: TU393.3

RESEARCH ON STIFFNESS OF HUB-SHAPE INLAY JOINT AND BEARING CAPACITY OF SINGLE-LAYER SPHERICAL RETICULATED SHELL

  • 摘要: 嵌入式毂节点是我国自行设计研制出来的一种新型装配式节点,具有施工方便、外形流畅、定位精度高等优点,属于典型的半刚性节点。但目前对此类节点的研究尚不够深入,现有规范尚未涉及此类半刚接单层球面网壳的相关理论计算公式和设计要求。基于此,采用ANSYS软件建立了嵌入式毂节点的精细化模型,基于幂函数模型拟合了节点的弯矩-转角公式,同时,探讨了不同跨度和矢跨比下节点刚度对单层球面网壳稳定承载能力的影响。研究表明:嵌入式毂节点在平面外弯曲时的弯矩-转角曲线以及在扭转作用时的扭矩-转角曲线均与幂函数模型吻合良好;网壳结构承载力对节点弯曲刚度的敏感程度要大于节点轴向刚度,且极限承载力对节点刚度的敏感程度会随着结构跨度或矢跨比的增大均呈现减弱的趋势。
    Abstract: The hub-shape inlay joint is a new type of assembled joint designed and developed in China, and has the advantages of convenient construction, smooth shape and high positioning accuracy, and it belongs to a typical semi-rigid joint. However, the research on this kind of joints is limited, and existing codes do not contain the relevant theoretical calculation formulas and design requirements for the semi-rigid single-layer spherical reticulated shell. Recognizing the aforementioned issues, a refined model of the hub-shape inlay joint is established by ANSYS package, and the moment-rotation curve of the joint is fitted based on the power function model. Meanwhile, the influence of joint stiffness on ultimate bearing capacity of the semi-rigid shell with different spans and rise-to-span ratios is discussed in detail. The results show that the moment-rotation curves of the hub-shape inlay joints in out-of-plane bending and torsional bending are in good agreement with the power function model. The sensitivity of the ultimate bearing capacity of shell to the bending stiffness of the joints is greater than the axial stiffness of the joints, and the sensitivity of the ultimate bearing capacity to the stiffness of the joints will get weaker with the increase of the span or rise-to-span ratio of the shell.
  • 图  1   嵌入式毂节点区域整体模型

    Figure  1.   Overall region model of the hub-shape inlay joint

    图  2   嵌入式毂节点简化计算模型

    Figure  2.   Simplified calculation model of the hub-shape inlay joint

    图  3   毂体结构示意图

    Figure  3.   Structural diagram of hub-shape body

    图  4   节点在轴心压力作用下的荷载-位移曲线

    Figure  4.   Load-displacement curve of joint under axial compression

    图  5   节点的弯矩-转角、扭矩-转角曲线

    Figure  5.   Moment-rotation and torque-rotation curves of joints

    图  6   节点在平面外弯曲作用下的应力云图

    Figure  6.   Stress contour of joint under out-of-plane bending

    图  7   节点在平面内弯曲作用下的应力云图

    Figure  7.   Stress contour of joint under in-plane bending

    图  8   模型结果与试验结果对比

    Figure  8.   Comparison between numerical and experimental results

    图  9   幂函数模型示意图

    Figure  9.   Schematic diagram of power function model

    图  10   毂体高度h和毂体直径d对节点刚度的影响

    Figure  10.   The influence of hub height h and hub diameter d on the stiffness of the joint

    图  11   嵌入榫颈部长度c对节点刚度的影响

    Figure  11.   The influence of length c of the embedded tenon neck on the stiffness of the joint

    图  12   μ1μ3c的关系图

    Figure  12.   The relation among μ1μ3 and c

    图  13   hd/c2n的关系图

    Figure  13.   The relationship between hd/c2 and n

    图  14   节点刚度实际M-θ曲线与节点刚度幂函数模型曲线的对比图

    Figure  14.   Comparison diagram between actual M-θ curve of joint stiffness and power function model curve of joint stiffness

    图  15   K8单层球面网壳结构

    Figure  15.   K8 single-layer spherical reticulated shell

    图  16   节点刚度物理意义示意图

    Figure  16.   Schematic diagram of physical meaning of joint stiffness

    图  17   不同节点刚度下网壳结构的荷载-位移曲线图

    Figure  17.   Load displacement curves of reticulated shells with different joint stiffness

    图  18   网壳Shell A~Shell D在极限承载力临界点时的节点位移图

    Figure  18.   Joint displacement diagram of Shell A~Shell D at critical point of ultimate bearing capacity

    图  19   不同矢跨比和跨度下半刚接网壳的荷载-位移曲线

    Figure  19.   Load displacement curves of semi-rigid reticulated shells with different rise span ratios and spans

    图  20   不同跨度和矢跨比下半刚接网壳在临界时刻的变形图

    Figure  20.   Deformation diagram of semi-rigid reticulated shells at critical state under different spans and rise-to-span ratios

    图  21   刚接和半刚接网壳在不同矢跨比和跨度下的极限承载力

    Figure  21.   Ultimate bearing capacity of rigid and semi-rigid reticulated shells with different rise-span ratios and spans

    图  22   不同跨度和矢跨比下半刚接网壳的荷载折减系数KN

    Figure  22.   Load reduction factors KN of semi-rigid reticulated shells with different spans and rise-to-span ratios

    表  1   节点的几何尺寸

    Table  1   Geometric sizes of the hub-shape inlay joint

    毂体
    高度
    h/mm
    毂体
    直径
    d/mm
    嵌入榫
    颈部
    长度c/mm
    嵌入榫
    直径
    r/mm
    嵌入榫
    颈部
    宽度b/mm
    杆件
    外径
    da/mm
    杆件
    内径
    db/mm
    杆端嵌入
    件总长
    Lhp/mm
    114150332013114104192
    下载: 导出CSV

    表  2   不同嵌入式毂节点的尺寸参数

    Table  2   Dimension parameters of different joints

    节点组号G48G60G89G114G133G140
    毂体高度h/mm486089114133140
    毂体直径d/mm130130150150180240
    嵌入榫颈部
    长度c/mm
    292933334050
    下载: 导出CSV

    表  3   节点在平面外弯曲作用下幂函数模型中的形状参数

    Table  3   Shape parameters in power function model of nodes under out of plane bending

    节点组号G48G60G89G114G133G140
    形状参数n14.0334.7462.2611.8501.9641.844
    下载: 导出CSV

    表  4   节点在扭转作用下幂函数模型中的形状参数

    Table  4   Shape parameters in power function model of joints under torsion

    节点组号G48G60G89G114G133G140
    形状参数n34.5197.3899.2148.7832.8935.760
    下载: 导出CSV

    表  5   不同节点刚度下网壳的极限承载力

    Table  5   Ultimate bearing capacity of reticulated shells with different joint stiffness

    网壳类型极限承载力/(kN/m2)影响系数KN
    Shell A 9.61
    Shell B 8.81 0.917
    Shell C 7.99 0.831
    Shell D 7.24 0.753
    下载: 导出CSV

    表  6   矢跨比和跨度对半刚性网壳极限承载力的影响

    Table  6   Influence of rise span ratio and span on ultimate bearing capacity of semi rigid reticulated shells

    跨度/m矢跨比刚接网壳极限
    承载力/(kN/m2)
    半刚接网壳极
    限承载力/(kN/m2)
    折减系数
    KN
    30 1/4 34.89 28.30 0.811
    1/5 28.51 22.48 0.788
    1/6 23.81 18.39 0.772
    1/7 19.74 15.48 0.784
    1/8 17.44 13.06 0.749
    40 1/4 18.77 16.17 0.861
    1/5 15.26 12.63 0.828
    1/6 12.84 10.39 0.809
    1/7 11.05 8.69 0.786
    1/8 9.61 7.24 0.753
    50 1/4 10.85 10.04 0.925
    1/5 8.63 8.21 0.951
    1/6 7.56 6.54 0.865
    1/7 6.59 5.58 0.847
    1/8 5.24 4.42 0.844
    下载: 导出CSV
  • [1]

    Chung BangYun, Jin HakYi, Eun YoungBahng. Joint Damage Assessment of Framed Structures Using a Neural Networks Technique [J]. Engineering Structures, 2001, 23: 425 − 431. doi: 10.1016/S0141-0296(00)00067-5

    [2]

    Rafiq Hasan, Norimitsu Kishi, Wai-Fah Chen. A new nonlinear connection classification system [J]. Journal of Constructional Steel Research, 1998, 47(1): 119 − 140. doi: 10.1016/S0143-974X(98)80105-3

    [3] 李永泉, 何若全. 框架半刚性连接的研究概述[J]. 哈尔滨建筑工程学院学报, 1994, 27(3): 112 − 119.

    Li Yongquan, He Ruoquan. Summary of research on semi-rigid frame connection [J]. Journal of Harbin Institute of Architectural Engineering, 1994, 27(3): 112 − 119. (in Chinese)

    [4]

    Nanda B K, Behera A K. Study on structural damping of aluminum using multi-layered and Jointed construction [J]. Structural Engineering and Mechanics, 2005, 20(6): 631 − 653. doi: 10.12989/sem.2005.20.6.631

    [5]

    Hiyama Y, Ishikawa K, Kato S, et al. Experiments and analysis of the post-bucking behavious of aluminum alloy double layer spare grids applying ball joints [J]. Structural Engineering and Mechanics, 2005, 9(3): 289 − 304.

    [6] 廖俊, 张毅刚. 焊接空心球节点荷载-位移曲线双线性模型研究[J]. 空间结构, 2010, 16(2): 31 − 38.

    Liao Jun, Zhang Yigang. Research on bilinear model of load displacement curve of welded hollow spherical joints [J]. Space structure, 2010, 16(2): 31 − 38. (in Chinese)

    [7] 范峰, 马会环, 马越洋. 半刚性节点网壳结构研究进展及关键问题[J]. 工程力学, 2019, 36(7): 1 − 7, 29. doi: 10.6052/j.issn.1000-4750.2018.06.ST05

    Fan Feng, Ma Huihuan, Ma Yueyang. Development and key issues of reticulated shells with semi-rigid joints [J]. Engineering Mechanics, 2019, 36(7): 1 − 7, 29. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.06.ST05

    [8] 郭小农, 朱劭骏, 熊哲, 罗永峰. K6型铝合金板式节点网壳稳定承载力设计方法[J]. 建筑结构学报, 2017, 38(07): 16 − 24.

    Guo Xiaonong, Zhu Shaojun, Xiong Zhe, Luo Yongfeng. Design method for stability bearing capacity of K6 aluminum alloy plate joint reticulated shell [J]. Journal of Architectural Structure, 2017, 38(07): 16 − 24. (in Chinese)

    [9] 朱南海, 李杰明. 基于节点构形度均衡化的单层网壳结构优化设计研究[J]. 工程力学, 2021, 38(6): 113 − 120, 132. doi: 10.6052/j.issn.1000-4750.2020.07.0441

    Zhu Nanhai, Li Jieming. Study on the optimization design of single-layer reticulated shell based on the homogenization of nodal well-formedness [J]. Engineering Mechanics, 2021, 38(6): 113 − 120, 132. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0441

    [10] 姜守芳, 李会军, 龙婷婷. 考虑节点偏差、杆件缺陷与偏心的单层三向柱面网壳稳定性研究[J]. 工程力学, 2022, 39(2): 178 − 188. doi: 10.6052/j.issn.1000-4750.2021.01.0005

    Jiang Shoufang, Li Huijun, Long Tingting. Stability of single-layer three-way reticulated barrel vaults considering global geometric imperfection, member imperfection and eccentricity [J]. Engineering Mechanics, 2022, 39(2): 178 − 188. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.01.0005

    [11] 赵中伟, 吴刚. 锈蚀焊接空心球节点随机抗压承载力研究[J]. 工程力学, 2021, 38(5): 219 − 228, 238. doi: 10.6052/j.issn.1000-4750.2020.07.0472

    Zhao Zhongwei, Wu Gang. Random compression capacity of corroded WHSJS [J]. Engineering Mechanics, 2021, 38(5): 219 − 228, 238. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0472

    [12] 王先铁, 郝际平, 钟炜辉, 丁维. 一种新型网壳结构节点的试验研究与有限元分析[J]. 西安建筑科技大学学报(自然科学版), 2005(3): 316 − 321.

    Wang Xiantie, Hao Jiping, Zhong Weihui, Ding Wei. Experimental study and finite element analysis of a new type of reticulated shell joint [J]. Journal of Xi'an University of Architecture and Technology (Natural Science Edition), 2005(3): 316 − 321. (in Chinese)

    [13] 李云峰. 一种空间网壳结构毂型节点受力性能研究[D]. 张家口: 河北建筑工程学院, 2019.

    Li Yunfeng. Research on the mechanical behavior of hub joints of a spatial reticulated shell structure [D]. Zhangjiakou: Hebei Institute of Architecture and Engineering, 2019. (in Chinese)

    [14]

    Li Huijun, Taniguchi Yoshiya. Effect of joint stiffness and size on stability of three-way single-layer cylindrical reticular shell [J]. International Journal of Space Structures, 2020, 35(3): 90 − 107. doi: 10.1177/0956059920931019

    [15]

    Ma Yueyang, Huihuan Ma, Zhiwei Yu, et al. Experimental and numerical study on the cyclic performance of the gear-bolt semi-rigid joint under uniaxial bending for free-form lattice shells [J]. Journal of Constructional Steel Research, 2018, 149: 257 − 268. doi: 10.1016/j.jcsr.2018.07.012

    [16]

    Ma Huihuan, Ren Shan, Fan Feng. Parametric study and analytical characterization of the bolt–column (BC) joint for single-layer reticulated structures [J]. Engineering Structures, 2016, 123: 108 − 123. doi: 10.1016/j.engstruct.2016.05.037

    [17] 叶继红, 陆明飞. 单层空间网格结构刚性节点优化设计方法研究[J]. 工程力学, 2020, 37(2): 81 − 89, 144. doi: 10.6052/j.issn.1000-4750.2019.01.0092

    Ye Jihong, Lu Mingfei. Design optimization method of rigid nodes in single-layer gridshells [J]. Engineering Mechanics, 2020, 37(2): 81 − 89, 144. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0092

    [18] JG/T 136−2016, 单层网壳嵌入式毂节点[S]. 北京: 中国建筑工业出版社, 2016.

    JG/T 136−2016, single layer reticulated shell embedded hub node [S]. Beijing: China Construction Industry Press, 2016. (in Chinese)

    [19] 姜栋. 单层网壳节点半刚性及其对结构整体稳定性影响的研究[D]. 杭州: 浙江大学, 2016.

    Jiang Dong. Research on semi-rigid joints of single-layer reticulated shells and their influence on overall stability of structures [D]. Hangzhou: Zhejiang University, 2016. (in Chinese)

    [20] 马越洋. 新型齿式半刚性节点静动力性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    Ma Yueyang. Research on static and dynamic performance of new type semi-rigid joints with teeth [D]. Harbin: Harbin Institute of technology, 2016. (in Chinese)

    [21]

    Kishi N, Chen W F. Moment-rotation relations of semi-rigid connections with angles [J]. Journal of Structural Engineering, 1990, 116(7): 1813 − 1834. doi: 10.1061/(ASCE)0733-9445(1990)116:7(1813)

    [22] 郑靖潇. 空心毂节点铝合金单层网壳稳定性与抗连续倒塌性能研究[D]. 天津: 天津大学, 2018.

    Zheng Jingxiao. Study on stability and progressive collapse resistance of aluminum alloy single-layer reticulated shells with hollow hub joints [D]. Tianjin: Tianjin University, 2018. (in Chinese)

    [23]

    Li Huijun, Taniguchi Yoshiya. Coupling effect of nodal deviation and member imperfection on load-carrying capacity of single-layer reticulated shell [J]. International Journal of Steel Structures, 2020, 20(3): 919 − 930. doi: 10.1007/s13296-020-00332-6

  • 期刊类型引用(9)

    1. 刘旭宏,祁皑,罗才松,黄凯. 基于双重壳模型的钢筋黏结滑移有限元模拟. 工程抗震与加固改造. 2022(03): 23-29 . 百度学术
    2. 赵发军,李建. 基于ABAQUS的复合箍筋约束轻骨料混凝土柱偏压力学性能研究. 中国测试. 2022(09): 171-176+184 . 百度学术
    3. 陈宇良,朱玲,吉云鹏,吴辉琴,叶培欢. 三轴受压粉煤灰陶粒轻骨料混凝土力学性能试验. 复合材料学报. 2022(10): 4801-4812 . 百度学术
    4. 万宇通,郑文忠,王英. 网格箍筋约束混凝土柱轴压受力性能试验研究. 工程力学. 2022(11): 166-176 . 本站查看
    5. 牛建刚,许文明,梁剑. 受压区局部约束塑钢纤维轻骨料混凝土梁的抗弯性能. 材料导报. 2021(08): 8056-8063 . 百度学术
    6. 李磊,王卓涵,张艺欣,郑山锁. 混凝土结构中考虑滑移效应的钢筋本构模型研究. 工程力学. 2020(03): 88-97 . 本站查看
    7. 邓宗才,姚军锁. 高强钢筋约束超高性能混凝土柱轴心受压本构模型研究. 工程力学. 2020(05): 120-128 . 本站查看
    8. 赵恩亮. 不同侧向应力作用下轻骨料混凝土力学性能研究. 新型建筑材料. 2020(05): 17-21 . 百度学术
    9. 周天华,余吉鹏,李亚鹏,张钰. 单轴对称十字型钢混凝土短柱轴压性能试验研究. 工程力学. 2020(12): 157-170 . 本站查看

    其他类型引用(14)

图(24)  /  表(6)
计量
  • 文章访问数:  424
  • HTML全文浏览量:  152
  • PDF下载量:  75
  • 被引次数: 23
出版历程
  • 收稿日期:  2021-05-24
  • 修回日期:  2021-08-17
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回