基于细观模拟的土石混合体固结特性研究

龚文平, 赵晓宇, 李馨馨, 赵超

龚文平, 赵晓宇, 李馨馨, 赵超. 基于细观模拟的土石混合体固结特性研究[J]. 工程力学, 2024, 41(10): 118-127. DOI: 10.6052/j.issn.1000-4750.2022.08.0705
引用本文: 龚文平, 赵晓宇, 李馨馨, 赵超. 基于细观模拟的土石混合体固结特性研究[J]. 工程力学, 2024, 41(10): 118-127. DOI: 10.6052/j.issn.1000-4750.2022.08.0705
GONG Wen-ping, ZHAO Xiao-yu, LI Xin-xin, ZHAO Chao. INVESTIGATION ON CONSOLIDATION CHARACTERISTICS OF SOIL-ROCK MIXTURES UPON MESOSCOPIC SIMULATIONS[J]. Engineering Mechanics, 2024, 41(10): 118-127. DOI: 10.6052/j.issn.1000-4750.2022.08.0705
Citation: GONG Wen-ping, ZHAO Xiao-yu, LI Xin-xin, ZHAO Chao. INVESTIGATION ON CONSOLIDATION CHARACTERISTICS OF SOIL-ROCK MIXTURES UPON MESOSCOPIC SIMULATIONS[J]. Engineering Mechanics, 2024, 41(10): 118-127. DOI: 10.6052/j.issn.1000-4750.2022.08.0705

基于细观模拟的土石混合体固结特性研究

基金项目: 国家自然科学基金青年基金项目(42002287)
详细信息
    作者简介:

    龚文平(1989−),男,四川人,教授,博士,主要从事地质模型不确定性和地质灾害风险评估研究(E-mail: wenpinggong@cug.edu.cn)

    赵晓宇(1997−),男,山东人,硕士,主要从事岩土工程多物理场耦合数值模拟研究(E-mail: zhaoxiaoyu@cug.edu.cn)

    赵 超(1993−),男,河南人,博士,主要从事地质模型不确定性模拟与工程地质灾害概率评估研究(E-mail: zhaochao@cug.edu.cn)

    通讯作者:

    李馨馨(1990−),女,安徽人,副教授,博士,主要从事岩土工程和地质工程多场耦合与稳定性研究(E-mail: lixinxin@cug.edu.cn)

  • 中图分类号: TU45

INVESTIGATION ON CONSOLIDATION CHARACTERISTICS OF SOIL-ROCK MIXTURES UPON MESOSCOPIC SIMULATIONS

  • 摘要:

    土石混合体具有特殊的结构特性,当前数值模拟研究主要聚焦于强度和变形特征,较少从细观尺度探究其固结特性。该文引入无厚度单元法模拟土-石接触面并验证了其有效性,在此基础上构建了土石混合体结构随机分布模型,从细观尺度上探究了内部结构特征(土-石接触面参数、块石形状、含量及级配)对土石混合体固结特性的影响规律。结果表明:当块石含量不变时,含圆形块石的土石混合体固结沉降最小,其次为椭圆形,含多边形块石的土石混合体固结沉降最大;随着含石量的增加,土石混合体沉降和孔隙比均减小;当含石量一定时,含大尺寸块石较多的土石混合体发生的固结程度较高。

    Abstract:

    Soil-rock mixture (SRM) exhibits distinct structural characteristics. Most of the existing studies are related to the strength and deformation behaviors of SRM; whereas, the studies on the consolidation behaviors of SRM are limited. In this study, the soil-rock interface is simulated by zero-thickness interface elements, and the effectiveness of the simulation method proposed is validated; then, the random aggregate model of the rock block within the soil matrix are constructed by Monte-Carlo simulation (MCS) method. Based on the mesoscopic simulations, the influences of the structural characteristics are investigated, including the rock proportion, shape, gradation, and soil-rock interface parameters, on the consolidation behaviors of SRM. The results indicate that the consolidation behavior of SRM can be strongly affected by the shape of rock. The consolidation settlement of SRM containing circular blocks is the smallest, followed by those containing elliptical blocks and polygonal blocks, respectively. With the increase of the rock proportion, the consolidation settlement, void ratio, and compressibility of SRM all decrease. And with respect to a specified proportion of rock, a higher degree of consolidation is presented for SRM containing larger rock blocks.

  • 图  1   土石混合体细观结构模型

    Figure  1.   Meso-structure model of the soil-rock mixture

    图  2   土-石接触面模拟示意图

    Figure  2.   Schematic diagram of modelling the soil-rock interface

    图  3   固结数值模拟结果与现有解析解对比

    Figure  3.   Comparison between numerical results and analytical results in one-dimensional consolidation condition test

    图  4   土-石接触面数值模拟网格划分

    Figure  4.   Mesh adopted in the numerical model ofthe soil-rock interface

    图  5   土石混合体固结沉降模拟结果对比

    Figure  5.   Comparison of the consolidation settlements obtained with different methods

    图  6   土石混合体试样顶部沉降蒙特卡洛抽样模拟结果

    Figure  6.   Results of the settlement curve at the top surface of the soil-rock mixture obtained with Monte Carlo simulations

    图  7   不同接触面参数条件下固结沉降及孔隙比变化规律

    Figure  7.   Variations of settlement and void ratio of the soil-rock mixture obtained with different interface parameters

    图  8   不同块石形状条件下竖向应力和竖向位移云图

    Figure  8.   Variations of vertical stress and vertical displacement of the soil-rock mixture obtained with different rock shapes

    图  9   不同块石倾角条件下固结沉降和孔隙比变化规律

    Figure  9.   Variations of settlement and void ratio of the soil-rock mixture obtained with different aggregate directions

    图  10   不同块石含量条件下固结沉降及孔隙比变化规律

    Figure  10.   Variations of settlement and void ratio of the soil-rock mixture obtained with different rock contents

    图  11   块石粒径级配曲线

    Figure  11.   Three types of rock particle size distribution

    图  12   不同块石级配条件下固结沉降及孔隙比变化规律

    Figure  12.   Variations of settlement and void ratio of the soil-rock mixture obtained with different rock particle size distributions

    表  1   材料参数

    Table  1   Material parameters

    参数数值
    土体密度/(kg/m3)2000
    流体密度/(kg/m3)1000
    泊松比0.4
    弹性模量/MPa6
    渗透系数/(m/s)4×10−6
    下载: 导出CSV

    表  2   材料参数

    Table  2   Material parameters

    组分密度/(kg/m3)弹性模量/kPa渗透系数/(m/s)泊松比
    土体21001.5×1045×10−90.36
    块石28502.35×1071.5×10−120.25
    接触面16801.2×1044×10−90.29
    下载: 导出CSV
  • [1]

    AFIFIPOUR M, MOAREFVAND P. Failure patterns of geomaterials with block-in-matrix texture: Experimental and numerical evaluation [J]. Arabian Journal of Geosciences, 2014, 7(7): 2781 − 2792. doi: 10.1007/s12517-013-0907-4

    [2] 王宇, 李晓, 赫建明, 等. 土石混合体细观特性研究现状及展望[J]. 工程地质学报, 2014, 22(1): 112 − 123. doi: 10.3969/j.issn.1004-9665.2014.01.016

    WANG Yu, LI Xiao, HE Jianming, et al. Research status and prospect of rock and soil aggregate [J]. Journal of Engineering Geology, 2014, 22(1): 112 − 123. (in Chinese) doi: 10.3969/j.issn.1004-9665.2014.01.016

    [3]

    MENG Q X, WANG H L, XU W Y, et al. A numerical homogenization study of the elastic property of a soil-rock mixture using random mesostructure generation [J]. Computers and Geotechnics, 2018, 98: 48 − 57. doi: 10.1016/j.compgeo.2018.01.015

    [4]

    YANG Y T, SUN G H, ZHENG H. Stability analysis of soil-rock-mixture slopes using the numerical manifold method [J]. Engineering Analysis with Boundary Elements, 2019, 109: 153 − 160. doi: 10.1016/j.enganabound.2019.09.020

    [5] 严颖, 赵金凤, 季顺迎. 块石含量和空间分布对土石混合体抗剪强度影响的离散元分析[J]. 工程力学, 2017, 34(6): 146 − 156. doi: 10.6052/j.issn.1000-4750.2016.01.0002

    YAN Ying, ZHAO Jinfeng, JI Shunying. Discrete element analysis of the influence of rock content and rock spatial distribution on shear strength of rock-soil mixtures [J]. Engineering Mechanics, 2017, 34(6): 146 − 156. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.01.0002

    [6] 陆翔, 吴榕真, 周伟, 等. 露天矿黏土-砂岩重塑混合体K0固结试验研究[J]. 煤炭科学技术, 2019, 47(6): 93 − 97.

    LU Xiang, WU Rongzhen, ZHOU Wei, et al. Study on K0 consolidation test of clay-sandstone remolded mixture in open-pit mine [J]. Coal Science and Technology, 2019, 47(6): 93 − 97. (in Chinese)

    [7]

    DING X H, ZHOU W, LU X, et al. Physical simulation test of soil-rock mixture from synthetic transparent soil [J]. Journal of Central South University, 2018, 25(12): 3085 − 3097. doi: 10.1007/s11771-018-3976-4

    [8] 杨壮. 山区高填方土石混填路基变形及稳定性研究[D]. 西安: 长安大学, 2021.

    YANG Zhuang. Study on deformation and stability of high-fill soil-rock mixture roadbed in mountain area [D]. Xi’an: Chang’an University, 2021. (in Chinese)

    [9] 孔郁斐. 机场高填方土石混合料长期变形规律研究[D]. 北京: 清华大学, 2017.

    KONG Yufei. Research on the long-term deformation of soil-rock mixtures in mountainous airports [D]. Beijing: Tsinghua University, 2017. (in Chinese)

    [10] 邵帅, 季顺迎. 块石空间分布对土石混合体边坡稳定性的影响[J]. 工程力学, 2014, 31(2): 177 − 183. doi: 10.6052/j.issn.1000-4750.2012.04.0248

    SHAO Shuai, JI Shunying. Effects of rock spatial distributions on stability of rock-soil-mixture slope [J]. Engineering Mechanics, 2014, 31(2): 177 − 183. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.04.0248

    [11] 丁秀丽, 李耀旭, 王新. 基于数字图像的土石混合体力学性质的颗粒流模拟[J]. 岩石力学与工程学报, 2010, 29(3): 477 − 484.

    DING Xiuli, LI Yaoxu, WANG Xin. Particle flow modeling mechanical properties of soil and rock mixtures based on digital image [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 477 − 484. (in Chinese)

    [12] 徐文杰, 胡瑞林, 王艳萍. 基于数字图像的非均质岩土材料细观结构PFC2D模型[J]. 煤炭学报, 2007, 32(4): 358 − 362. doi: 10.3321/j.issn:0253-9993.2007.04.005

    XU Wenjie, HU Ruilin, WANG Yanping. PFC2D model for mesostructure of inhomogeneous geomaterial based on digital image processing [J]. Journal of China Coal Society, 2007, 32(4): 358 − 362. (in Chinese) doi: 10.3321/j.issn:0253-9993.2007.04.005

    [13] 钟祖良, 别聪颖, 胡伦, 等. 基于Forchheimer渗流的土石混合体单向固结模型研究[J]. 地下空间与工程学报, 2019, 15(2): 473 − 480, 488.

    ZHONG Zuliang, BIE Congying, HU Lun, et al. Research on one-dimensional consolidation model of soil-rock mixtures backfill under Forchheimer seepage model [J]. Chinese Journal of Underground Space and Engineering, 2019, 15(2): 473 − 480, 488. (in Chinese)

    [14] 胡伦. 欠固结土石混合体回填土单向固结模型研究[D]. 重庆: 重庆大学, 2016.

    HU Lun. Research on one-dimensional consolidation model of under consolidated soil-rock mixtures backfill [D]. Chongqing: Chongqing University, 2016. (in Chinese)

    [15]

    SHI X S, YIN J H, ZHAO J D. Elastic visco-plastic model for binary sand-clay mixtures with applications to one-dimensional finite strain consolidation analysis [J]. Journal of Engineering Mechanics, 2019, 145(8): 04019059. doi: 10.1061/(ASCE)EM.1943-7889.0001623

    [16]

    BIOT M A. General theory of three-dimensional consolidation [J]. Journal of Applied Physics, 1941, 12(2): 155 − 164. doi: 10.1063/1.1712886

    [17] 杜修力, 张佩, 金浏. 土石混合体宏观力学性能研究的细观等效分析方法[J]. 工程力学, 2017, 34(10): 44 − 52. doi: 10.6052/j.issn.1000-4750.2016.03.0181

    DU Xiuli, ZHANG Pei, JIN Liu. A mesoscopic equivalent analysis method for the study on macromechanical properties of soil-rock mixture [J]. Engineering Mechanics, 2017, 34(10): 44 − 52. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.03.0181

    [18]

    COLI N, BERRY P, BOLDINI D. In situ non-conventional shear tests for the mechanical characterisation of a bimrock [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(1): 95 − 102. doi: 10.1016/j.ijrmms.2010.09.012

    [19]

    BARY B, BOURCIER C, HELFER T. Analytical and 3D numerical analysis of the thermoviscoelastic behavior of concrete-like materials including interfaces[J]. Advances in Engineering Software, 2017, 112: 16 − 30. doi: 10.1016/j.advengsoft.2017.06.006

    [20] 金浏, 李秀荣, 杜修力. CFRP加固钢筋混凝土方柱抗震性能尺寸效应的细观分析[J]. 工程力学, 2021, 38(7): 41 − 51. doi: 10.6052/j.issn.1000-4750.2020.07.0435

    JIN Liu, LI Xiurong, DU Xiuli. Meso-scale analysis of size effect on aseismic behavior of reinforced concrete square columns strengthened with CFRP [J]. Engineering Mechanics, 2021, 38(7): 41 − 51. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0435

    [21] 马怀发, 芈书贞, 陈厚群. 一种混凝土随机凸多边形骨料模型生成方法[J]. 中国水利水电科学研究院学报, 2006, 4(3): 196 − 201.

    MA Huaifa, MI Shuzhen, CHEN Houqun. A generating approach of random convex polygon aggregate model [J]. Journal of China Institute of Water Resources and Hydropower Research, 2006, 4(3): 196 − 201. (in Chinese)

    [22]

    TERZAGHI K. Theoretical soil mechanics [M]. New York: John Wiley & Sons, Inc, 1943: 1 − 510.

    [23]

    MURAD M A, LOULA A F. Improved accuracy in finite element analysis of Biot's consolidation problem [J]. Computer Methods in Applied Mechanics & Engineering, 1992, 95(3): 359 − 382 doi: 10.1016/0045-7825(92)90193-N

    [24]

    MEDLEY E W. The engineering characterization of melanges and similar block-in-matrix rocks (bimrocks) [D]. Berkeley: University of California, 1994.

    [25] GB/T 50123−2019, 土工试验方法标准[S]. 北京: 中国计划出版社, 2019: 1 − 684.

    GB/T 50123−2019, Standard for geotechnical testing method [S]. Beijing: China Planning Press, 2019: 1 − 684 . (in Chinese)

    [26] 林宗元. 岩土工程勘察设计手册[M]. 沈阳: 辽宁科学技术出版社, 1996 , 1 − 1930.

    LIN Zongyuan. Geotechnical investigation and design manual [M]. Shenyang: Liaoning Science and Technology Publishing House, 1996 , 1 − 1930. (in Chinese)

    [27] 陈余, 李传勋. 连续排水边界下考虑起始坡降的软黏土固结解[J]. 工程力学, 2021, 38(9): 161 − 170. doi: 10.6052/j.issn.1000-4750.2020.09.0656

    CHEN Yu, LI Chuanxun. Consolidation analysis of soft clay considering the threshold hydraulic gradient and a continuous drainage boundary [J]. Engineering Mechanics, 2021, 38(9): 161 − 170. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.09.0656

    [28] 张佩, 杜修力, 金浏, 等. 块石长轴倾角对土石混合体宏观力学性能的影响研究[J]. 工程力学, 2018, 35(9): 64 − 72. doi: 10.6052/j.issn.1000-4750.2017.05.0362

    ZHANG Pei, DU Xiuli, JIN Liu, et al. Study on the orientation angle of rock long axis on the macromechanical properties of soil-rock-mixture [J]. Engineering Mechanics, 2018, 35(9): 64 − 72. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.05.0362

    [29] 冯德銮, 梁仕华. 一个基于细观物理机制的土石混合料抗剪强度理论模型[J]. 工程力学, 2022, 39(6): 134 − 145. doi: 10.6052/j.issn.1000-4750.2021.03.0216

    FENG Deluan, LIANG Shihua. A mesomechanism-based shear strength model for soil-rock mixture [J]. Engineering Mechanics, 2022, 39(6): 134 − 145. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.03.0216

    [30]

    XU W J, ZHANG H Y. Research on the effect of rock content and sample size on the strength behavior of soil-rock mixture [J]. Bulletin of Engineering Geology and the Environment, 2021, 80(3): 2715 − 2726. doi: 10.1007/s10064-020-02050-z

  • 期刊类型引用(5)

    1. 代和树,李龙起. h型桩加固边坡动力响应特性及破坏模式研究. 三峡大学学报(自然科学版). 2025(01): 50-56 . 百度学术
    2. 谭晋鹏,潘旦光,王立军,丁昊,付相球,王进廷. 弹性半空间场地辐射阻尼影响下结构模态阻尼比实时耦联动力试验. 建筑结构学报. 2023(07): 27-36 . 百度学术
    3. 江志伟,刘晶波. 埋深对地下结构振动台模型试验结果的影响. 工程力学. 2021(S1): 209-215 . 本站查看
    4. 禹海涛,李衍熹. 土-结构动力作用体系混合试验研究进展与探讨. 中国公路学报. 2020(12): 105-117 . 百度学术
    5. 李银胜,白涌滔,唐贞云. 土结相互作用对质量不规则钢框架抗地震倒塌性能的影响. 土木工程学报. 2020(S2): 22-27 . 百度学术

    其他类型引用(5)

图(12)  /  表(2)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  22
  • PDF下载量:  54
  • 被引次数: 10
出版历程
  • 收稿日期:  2022-08-13
  • 修回日期:  2023-04-29
  • 网络出版日期:  2023-10-10
  • 刊出日期:  2024-10-24

目录

    /

    返回文章
    返回