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RESEARCH ON THE COUPLED BENDING-TORSIONAL FLUTTER
MECHANISM FOR THIN PLATE SECTIONS
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Abstract: Based on the analytical method (2d-3DOF method) for two-dimensional three degrees of freedom coupling
flutter, the flutter-driving mechanism and flutter modality of the classical coupled bending-torsional flutter phenomenon
about thin plate sections were investigated. The research results indicate that the classical coupled flutter is driven by
negative aerodynamic damping, and the “aerodynamic stiffness driving mechanism” is incorrect. The negative
aerodynamic damping mainly comes from coupling effects between torsional and heaving motions of the whole system.
The calculated flutter modality vector at flutter onset reveals that the participation level of heaving motion in the flutter
phenomenon is very high, which implies that strong coupling effect exists between motions in different degrees of
freedom. Then both the relationship between flutter modality and torsion-bend-frequency ratio and the relationship
between flutter modality and structural flutter performance were analyzed. It is found that although there is a simple and
unique relationship between flutter modality and torsion-bend-frequency ratio, the relationship between flutter modality
and structural flutter performance is rather complicated. The mechanism of heaving-type flutter about thin plate sections
was also discussed.
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Fig.1 Two dimensional bridge-girder section
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Fig.2 Thin plate-section model
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Fig.3 Variation of systematic damping
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Fig.4 variation of systematic frequency
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Fig.5 variation of aerodynamic damping of the systematic
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Fig.7 Flutter modality vectors
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Fig.9 Aerodynamic damping of the systematic torsional motion
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Fig.10 Aerodynamic damping of the systematic heaving motion
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