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TIME-DOMAIN FINITE-ELEMENT ANALYSIS OF TWO DIMENSIONAL
SEISMIC SOIL-STRUCTURE INTERACTIONS

“QIU Liu-chao', LIU Hua', JIN Feng’

(1. Department of Engineering Mechanics, Shanghai Jiaotong University, Shanghai 200030, China;

2. Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China)

Abstract: The dynamic soil-structure interaction (SSI) is one of the most important subjects in earthquake
engineering. A time-domain finite element method (FEM) for analysis of two dimensional dynamic soil-structure
interactions due to seismic excitations is presented. Emphasis is placed on how to simulate transient wave
propagation in unbounded media and how to realize the earthquake input. In the proposed finite element
procedure, both the method for earthquake input and the local transmitting artificial boundaries for finite analysis
domain are established based on the cylindrical wave equation. The proposed method is simple and efficient, and
the time-stepping scheme using Newmark’s method in conjunction with the method is unconditionally stable,
allowing for efficient and reliable time-domain computations. Numerical examples are presented to illustrate the
validity and accuracy of the proposed method.

Key words: soil-structure interaction (SSI); artificial boundary; earthquake input; seismic response; time-
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Fig.2 Sketch of absorbing boundary and earthquake input

Fig.1 Computational model for soil-structure system
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Fig.5 Seismic response analysis of a gravity dam
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