弹性力学问题自适应有限元及其局部多重网格法

刘春梅, 肖映雄, 舒适, 钟柳强

刘春梅, 肖映雄, 舒适, 钟柳强. 弹性力学问题自适应有限元及其局部多重网格法[J]. 工程力学, 2012, 29(9): 60-67,91. DOI: 10.6052/j.issn.1000-4750.2010.12.0934
引用本文: 刘春梅, 肖映雄, 舒适, 钟柳强. 弹性力学问题自适应有限元及其局部多重网格法[J]. 工程力学, 2012, 29(9): 60-67,91. DOI: 10.6052/j.issn.1000-4750.2010.12.0934
LIU Chun-mei, XIAO Ying-xiong, SHU Shi, ZHONG Liu-qiang. ADAPTIVE FINITE ELEMENT METHOD AND LOCAL MULTIGRID METHOD FOR ELASTICITY PROBLEMS[J]. Engineering Mechanics, 2012, 29(9): 60-67,91. DOI: 10.6052/j.issn.1000-4750.2010.12.0934
Citation: LIU Chun-mei, XIAO Ying-xiong, SHU Shi, ZHONG Liu-qiang. ADAPTIVE FINITE ELEMENT METHOD AND LOCAL MULTIGRID METHOD FOR ELASTICITY PROBLEMS[J]. Engineering Mechanics, 2012, 29(9): 60-67,91. DOI: 10.6052/j.issn.1000-4750.2010.12.0934

弹性力学问题自适应有限元及其局部多重网格法

基金项目: 国家自然科学基金重大研究计划重点支持项目(91130002);国家自然科学基金项目(10972191);长江学者和创新团队发展计划项目(IRT1179);湖南省研究生创新基金项目(CX2010B245,CX2010B246)
详细信息
    作者简介:

    刘春梅(1981―),女,山西五台人,博士生,从事偏微分方程数值解研究(E-mail: liuchunmei8080@yahoo.com.cn);舒 适(1962―),男,湖南双峰人,教授,博士,博导,从事偏微分方程数值解及多重网格法研究(E-mail: shushi@xtu.edu.cn);钟柳强(1980―),男,广东兴宁人,博士,从事偏微分方程数值解研究(E-mail: zlq1980@gmail.com).

    通讯作者:

    肖映雄(1970―),男,湖南城步人,教授,博士,从事计算固体力学研究(E-mail: xyx610xyx@yahoo.com.cn).

  • 中图分类号: O343.3; TB115

ADAPTIVE FINITE ELEMENT METHOD AND LOCAL MULTIGRID METHOD FOR ELASTICITY PROBLEMS

More Information
    Corresponding author:

    XIAO Ying-xiong: xiao ying-xiong

  • 摘要: 针对平面弹性力学问题,利用最新顶点二分法,设计了一种不需要标记振荡项和加密单元不需要满足“内节点”性质的自适应有限元法;利用自适应加密过程中每层网格上只有局部单元需要加密这一特性,设计了一种基于局部松弛的多重网格法.数值实验结果表明:该文设计的自适应有限元法具有一致收敛性和拟最优计算复杂度,基于局部松弛的多重网格法对求解弹性力学问题自适应网格下的有限元方程具有很好的计算效率和鲁棒性.
    Abstract: In this paper, an adaptive finite element (AFEM) method is designed by using the newest vertex bisection for linear elasticity problems in two dimensions. This method marks exclusively according to the error estimator without special treatment of oscillation and performs a minimal element refinement without the interior node property. Furthermore, a type of multigrid method based on the local relaxation is applied to the AFEM discrete systems by using the special properties during refinement. The results of various numerical experiments are shown that the proposed AFEM method is uniformly convergent and has quasi-optimal numerical complexity. The resulting multigrid method is much more robust and efficient in CPU times than the usual multigrid methods.
  • [1] Senturia S, Aluru N, White J. Simulating the behavior ofMEMS devices: Computational methods and needs [J].IEEE Computational Science and Engineering, 1997, 4:30-43.  

    [2] Senturia S, Harris R, Johnson B, et al. A computer-aideddesign system for micro-electromechanical systems [J].Journal of Micro-electromechanical Systems, 1992, 1:3-13.

    [3] Brenner C, Li Yengsung. Linear finite element methodsfor planar linear elasticity [J]. Mathematics ofComputation, 1992, 59: 321-338.  

    [4] 陈竹昌, 王建华, 王卫中. 自适应多层网格有限元求解应力集中问题[J]. 同济大学学报, 1994, 22(3): 203-208.Chen Zhuchang, Wang Jianhua, Wang Weizhong.Adaptive multigrid FEM for stress concentration [J].Journal of Tongji University, 1994, 22(3): 203-208. (inChinese)

    [5] 梁力, 林韵梅. 有限元网格修正的自适应分析及其应用[J]. 工程力学, 1995, 12(2): 109-118.Liang Li, Lin Yunmei. Adaptive mesh refinement offinite element method and its application [J]. EngineeringMechanics, 1995, 12(2): 109-118. (in Chinese)

    [6] 王建华. 线弹性有限元的自适应加密与多层网格法求解[J]. 河海大学学报, 1994, 22(3): 16-22.Wang Jianhua. Adaptive refinement and multigridsolution for linear finite element method [J]. Journal ofHohai University, 1994, 22(3): 16-22. (in Chinese)

    [7] 王建华, 殷宗泽, 赵维炳. 自适应多层网格有限元网格生成器研制[J]. 计算结构力学与其应用, 1995, 12(1):86-92.Wang Jianhua, Yin Zongze, Zhao Weibing.Implementation of the mesh generator for adaptivemultigrid finite element method [J]. ComputationalStructural Mechanics and Applications, 1995, 12(1):86-92. (in Chinese)

    [8] Cai Z Q, Korsawe J, Starke G. An adaptive least squaresmixed finite element method for the stress displacementformulation of linear elasticity [J]. Numerical Methodsfor Partial Differential Equations, 2005, 21(1): 132-148.  

    [9] Whiler T P. Locking free adaptive discontinuous galerkinFEM for linear elasticity problem [J]. Mathematics ofComputation, 2006, 75(255): 1087-1102.  

    [10] Chen L, Zhang C S. A coarsening algorithm on adaptivegrids by newest vertex bisection and its applications [J].Journal of Computational Mathematics, 2010, 28(6):767-789.

    [11] Verfürth R. A review of a posteriori error estimationtechniques for elasticity problem [J]. Computer Methodsin Applie Mechanics and Engineering, 1999, 176: 419-440.  

    [12] Carstensen C, Dolzmann G, Funken S A, Helm D S.Locking-free adaptive mixed finite element methods inlinear elasticity [J]. Computer Methods in ApplieMechanics and Engineering, 2000, 190(13): 1701-1718.  

    [13] Lonsing M, Verfürth R. A posteriori error estimators formixed finite element methods in linear elasticity [J].Numerische Mathematik, 2004, 97: 757-778.  

    [14] Mitchell W F. Optimal multilevel iterative methods foradaptive grids [J]. SIAM Journal on Scientific andStatistical Computing, 1992, 13: 146-167.  

    [15] Wu H J, Chen Z M. Uniform convergence of multigridV-cycle on adaptively refined finite element meshes forsecond order elliptic problems [J]. Science in ChinaSeries A: Mathematics, 2006, 49(10): 1405-1429.  

    [16] Carstemsen C. Convergence of adaptive finite elementmethods in computations mechanics [J]. AppliedMathematics and Computation, 2009, 59(9): 2119-2130.

    [17] Cascon J, Kreuzer C, Nochetto R, Siebert K.Quasi-optimal convergence rate for an adaptive finiteelement method [J]. SIAM Journal on NumericalAnalysis, 2008, 46: 2524-2550.

    [18] Dörfler W. A convergent adaptive algorithm forpoisson’s equation [J]. SIAM Journal on NumericalAnalysis, 1996, 33(3): 1106-1124.
计量
  • 文章访问数:  1843
  • HTML全文浏览量:  21
  • PDF下载量:  364
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-16
  • 修回日期:  2011-07-20
  • 刊出日期:  2012-09-24

目录

    /

    返回文章
    返回