饱和分数导数型粘弹性土-深埋圆形隧洞衬砌系统的动力特性

杨 骁 闻敏杰

杨 骁 闻敏杰. 饱和分数导数型粘弹性土-深埋圆形隧洞衬砌系统的动力特性[J]. 工程力学, 2012, 29(12): 248-255. DOI: 10.6052/j.issn.1000-4750.2011.05.0283
引用本文: 杨 骁 闻敏杰. 饱和分数导数型粘弹性土-深埋圆形隧洞衬砌系统的动力特性[J]. 工程力学, 2012, 29(12): 248-255. DOI: 10.6052/j.issn.1000-4750.2011.05.0283
YANG Xiao. DYNAMIC CHARACTERISTICS OF SATURATED FRACTIONAL DERIVATIVE TYPE VISCOELASTIC SOIL AND LINING SYSTEM WITH A DEEPLY EMBEDDED CIRCULAR TUNNEL[J]. Engineering Mechanics, 2012, 29(12): 248-255. DOI: 10.6052/j.issn.1000-4750.2011.05.0283
Citation: YANG Xiao. DYNAMIC CHARACTERISTICS OF SATURATED FRACTIONAL DERIVATIVE TYPE VISCOELASTIC SOIL AND LINING SYSTEM WITH A DEEPLY EMBEDDED CIRCULAR TUNNEL[J]. Engineering Mechanics, 2012, 29(12): 248-255. DOI: 10.6052/j.issn.1000-4750.2011.05.0283

饱和分数导数型粘弹性土-深埋圆形隧洞衬砌系统的动力特性

基金项目: 国家自然科学基金项目(10872124)
详细信息
  • 中图分类号: O327; TU441.8

DYNAMIC CHARACTERISTICS OF SATURATED FRACTIONAL DERIVATIVE TYPE VISCOELASTIC SOIL AND LINING SYSTEM WITH A DEEPLY EMBEDDED CIRCULAR TUNNEL

  • 摘要: 在频率域研究了分数导数型粘弹性饱和土体和深埋圆形隧洞弹性衬砌相互作用的耦合简谐振动。将土骨架视为具有分数阶导数型本构的粘弹性体,基于饱和多孔介质理论和平面弹性理论,分别给出了饱和粘弹性土、弹性衬砌简谐振动的解析解。通过弹性衬砌和饱和土接触面处的连续性条件和衬砌内边界条件,得到了饱和粘弹性土-衬砌系统的稳态动力响应,给出了衬砌和饱和粘弹性土位移、应力和孔隙压力的解析表达式。在此基础上,进行了参数研究,讨论了物理和几何参数对系统响应的影响。研究表明:饱和分数导数型粘弹性土-衬砌系统的动力响应与经典饱和弹性/粘弹性土-衬砌系统的动力响应差异很大。
    Abstract: The coupled harmonic vibration of the saturated fractional derivative type viscoelastic soil and elastic lining of a deeply embedded circular tunnel is investigated in the frequency domain. Regarding the soil skeleton as a viscoelastic medium with a fractional derivative constitutive relation and based on the theory of saturated porous medium and plane elasticity, analytical solutions of the harmonic vibrations of the saturated viscoelastic soil and the elastic lining are presented, respectively. The steady-state dynamic responses of the saturated viscoelastic soil and lining system are obtained by the inner boundary conditions of the lining and the continuity conditions on the interface between the saturated soil and the lining, and the analytical expressions of the displacements, stresses and the pore water pressures for the saturated viscoelastic soil and lining are given. Then, the parameter study is conducted, and the influences of the physical and geometry parameter on the dynamic characteristics of the system are examined. It is revealed that there exist remarkable differences for the dynamic responses between the saturated fractional derivative type viscoelastic soil-lining system and the classical saturated elastic/viscoelastic soil-lining system.
  • [1] Carter J P, Booker J R. Elastic consolidation around a deep circular tunnel [J]. International Journal of Solids and Structures, 1982, 18(12): 1059―1074.
    [2] Carter J P, Booker J R. Creep and consolidation around circular openings in infinite media [J]. International Journal of Solids and Structures, 1983, 19(8): 663―675.
    [3] Kumar R, Miglani A, Debnath L. Radial displacements of an infinite liquid saturated porous medium with cylindrical cavity [J]. Computers and Mathematics with Applications, 1999, 37(7): 117―123.
    [4] Li X. Stress and displacement fields around a deep circular tunnel with partial sealing [J]. Computers and Geotechnics, 1999, 24(2): 125―140.
    [5] 刘干斌, 谢康和, 施祖元. 粘弹性土体中深埋圆形隧道的应力和位移分析[J]. 工程力学, 2004, 21(5): 132―138.
    Liu Ganbin, Xie Kanghe, Shi Zuyuan. Analysis of stress and displacement around a deep circular tunnel in viscoelastic soil [J]. Engineering Mechanics, 2004, 21(5): 132―138. (in Chinese)
    [6] Lu Jianfei, Jeng Dongsheng. Dynamic analysis of an infinite cylindrical hole in a saturated poroelastic medium [J]. Archive of Applied Mechanics, 2006, 76(5/6): 263―276.
    [7] Zakout U, Akkas N. Transient response of a cylindrical cavity with and without a bounded shell in an infinite elastic medium [J]. International Journal of Engineering Science, 1997, 35(12/13): 1203―1220.
    [8] 刘干斌, 谢康和, 施祖元. 黏弹性饱和多孔介质中圆柱孔洞的频域响应[J]. 力学学报, 2004, 36(5): 557―563.
    Liu Ganbin, Xie Kanghe, Shi Zuyuan. Frequency response of a cylinder cavity in poroelastic saturated medium [J]. Acta Mechanica Sinica, 2004, 36(5): 557―563. (in Chinese)
    [9] Bagley R L, Torvik P J. A theoretical basis for the application of fractional calculus to viscoelasticity [J]. Journal of Rheology, 1983, 27(3): 201―210.
    [10] 朱正佑, 李根国, 程昌钧. 具有分数导数本构关系的粘弹Timoshenko梁的静动力学行为分析[J]. 应用数学和力学, 2002, 23(1): 1―10.
    Zhu Zhengyou, Li Genguo, Cheng Changjun. Quasi-static and dynamical analysis for viscoelastic Timoshenko beam with fractional derivative constitutive relation [J]. Applied Mathematics and Mechanics, 2002, 23(1): 1―10. (in Chinese)
    [11] 刘林超, 张卫. 具有分数Kelvin模型的粘弹性岩体中水平圆形硐室的变形特性[J]. 岩土力学, 2005, 26(2): 287―289.
    Liu Linchao, Zhang Wei. The deformation proprieties of horizontal round adits in viscoelastic rocks by fractional Kelvin model [J]. Rock and Soil Mechanicals, 2005, 26(2): 287―289. (in Chinese).
    [12] Adolfsson K, Enelund M, Olsson P. On the fractional order model of viscoelasticity [J]. Mechanics of Time-Dependent Materials, 2005, 9(1): 15―34.
    [13] Mainardi F. Fractional calculus and waves in linear viscoelasticity-an introduction to mathematical models [M]. London, British: Imperial College Press, 2010: 77―107.
    [14] de Boer R. Theory of porous media: Highlights in the historical development and current state [M]. Berlin, Heidelberg: Springer-Verlag, 2000: 362―365.
    [15] Edelman I, Wilmanski K. Asymptotic analysis of surface waves at vacuum/porous medium and liquid porous medium interfaces [J]. Continuum Mechanics and Thermodynamics, 2002, 14(1): 25―44.
    [16] Diebels S, Ehlers W. Dynamical analysis of a fully saturated porous medium accounting for geometrical and material non-linearities [J]. International Journal for Numerical Methods in Engineering, 1996, 39(1): 81―97.
    [17] Ehlers W, Markert B. On the viscoelastic behaviour of fluid-saturated porous materials [J]. Granular Matter, 2000, 2(3): 153―161.
    [18] Yang Xiao, Pan Yuan. Axisymmetrical analytical solution for vertical vibration of end-bearing pile in saturated viscoelastic soil layer [J]. Applied Mathematics and Mechanics, 2010, 31(2): 193―204.
    [19] 刘林超, 杨骁. 分数导数模型描述的饱和土桩纵向振动分析[J]. 岩土力学, 2011, 32(2): 526―532.
    Liu Linchao, Yang Xiao. Analysis of vertical vibrations of a pile in saturated soil described by fractional derivative model [J]. Rock and Soil Mechanics, 2011, 32(2): 526―532. (in Chinese)
    [20] Rossikhin Y A, Shitikota M V. Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids [J]. Applied Mechanics Review, 1997, 50(1): 15―67.
    [21] 高盟, 高广运, 王滢, 熊浩. 内部荷载作用下圆柱形孔洞的动力响应解答[J]. 力学季刊, 2009, 30(2): 266―272.
    Gao Meng, Gao Guangyun, Wang Ying, Xiong Hao. A solution on dynamic response of a cylindrical cavity under internal load [J]. Chinese Quarterly of Mechanics, 2009, 30(2): 266―272. (in Chinese)
计量
  • 文章访问数:  1384
  • HTML全文浏览量:  19
  • PDF下载量:  271
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-09
  • 修回日期:  2011-07-15
  • 刊出日期:  2012-12-23

目录

    /

    返回文章
    返回