SH波对覆盖层下浅埋圆孔和圆夹杂的散射

陈冬妮, 齐辉, 赵春香

陈冬妮, 齐辉, 赵春香. SH波对覆盖层下浅埋圆孔和圆夹杂的散射[J]. 工程力学, 2014, 31(10): 40-46. DOI: 10.6052/j.issn.1000-4750.2013.05.0385
引用本文: 陈冬妮, 齐辉, 赵春香. SH波对覆盖层下浅埋圆孔和圆夹杂的散射[J]. 工程力学, 2014, 31(10): 40-46. DOI: 10.6052/j.issn.1000-4750.2013.05.0385
CHEN Dong-ni, QI Hui, ZHAO Chun-xiang. SCATTERING OF SH-WAVE BY SUBSURFACE CIRCULAR CAVITIES AND INCLUSIONS IN A LAYERED HALF-SPACE[J]. Engineering Mechanics, 2014, 31(10): 40-46. DOI: 10.6052/j.issn.1000-4750.2013.05.0385
Citation: CHEN Dong-ni, QI Hui, ZHAO Chun-xiang. SCATTERING OF SH-WAVE BY SUBSURFACE CIRCULAR CAVITIES AND INCLUSIONS IN A LAYERED HALF-SPACE[J]. Engineering Mechanics, 2014, 31(10): 40-46. DOI: 10.6052/j.issn.1000-4750.2013.05.0385

SH波对覆盖层下浅埋圆孔和圆夹杂的散射

详细信息
    作者简介:

    齐辉(1963-),男,黑龙江人,教授,博士,博导,主要从事弹性波动理论及应用研究(E-mail:qihui205@sohu.com); 赵春香(1967-),女,黑龙江人,副教授,博士,主要从事弹性波动理论及应用研究(E-mail:824275880@qq.com).

    通讯作者:

    陈冬妮(1974-),女,黑龙江人,博士生,主要从事弹性波动理论及应用研究(E-mail:cdn1230@126.com).

  • 中图分类号: O343.1; P315.3

SCATTERING OF SH-WAVE BY SUBSURFACE CIRCULAR CAVITIES AND INCLUSIONS IN A LAYERED HALF-SPACE

  • 摘要: 利用复变函数法和波函数展开法给出了具有地表覆盖层的弹性半空间内圆形孔洞和圆柱形夹杂在稳态SH波作用下动应力集中问题的解。根据SH波散射的衰减特性,该问题采用大圆弧假定法求解,利用半径很大的圆来拟合地表覆盖层的直边界,将具有地表覆盖层的半空间直边界问题转化为曲面边界问题。借助Helmholtz定理预先写出问题波函数的一般形式解,再利用边界条件并借助复数Fourier-Hankel级数展开把问题化为求解波函数中未知系数的无穷线性代数方程组,截断该无穷代数方程组可求得该问题的近似解析解。最后,通过算例讨论了地表覆盖层及圆孔对浅埋圆柱形夹杂动应力集中的影响。结果表明,覆盖层刚度和厚度的变化及圆孔的存在可显著改变圆夹杂周边动应力集中的分布。
    Abstract: The solution to the dynamic stress concentration of circular cavities and inclusions subject to SH-Wave in an elastic half-space covered with an elastic layer is attained in this study, using the complex function method and the wave function expansion method. According to the attenuation characteristics of SH-Wave scattering, the problem is attempted by using the large-arc assumption method, in which a circular boundary of a large radius is used to approximate the straight boundary of the surface layer to transform the original problem to a surface boundary problem. With the theory of Helmholtz, the general solution of the Biot’s wave function is obtained. Subsequently, infinite linear algebraic equations with unknown coefficients are formulated using the Fourier-Hankel series expansion and boundary conditions, and the approximate analytic solution is derived by truncating the equations. Finally, the dynamic stress concentration factor around the circular inclusion is discussed in a numerical example. Results show that different stiffness and thickness of the surface layer and the existence of cavities can remarkably change the dynamic stress concentration distribution around circular inclusions.
  • [1] Pao Y H. Mow C C. Diffraction of elastic waves and dynamic stress concentrations [M]. New York: Crane and Russak, 1973: 114-304.
    [2] Pao Y H. Elastic waves in solids [J]. ASME Journal of Applied Mechanics, 1983, 50(4b): 1152-1164.
    [3] 林皋. 地下结构抗震分析综述(上)[J]. 世界地震工程,1990, 5(2): 1-10.Lin Gao. Seismic analysis summary of underground structures (I) [J]. World Earthquake Engineering, 1990, 5(2): 1-10. (in Chinese)
    [4] 王铎, 马兴瑞, 刘殿魁. 弹性动力学最新进展[M]. 北京: 科学出版社, 1995: 11-23.Wang Duo, Ma Xingrui, Liu Diankui. The latest progress of elastic dynamics [M]. Beijing: Science Press, 1995: 11-23. ( in Chinese)
    [5] 钟伟芳, 聂国华. 弹性波的散射理论[M]. 武汉: 华中理工大学出版社, 1997: 137-189.Zhong Weifang, Nie Guohua. Theory of scattering of elastic wave [M]. Wuhan: Huazhong University of Science and Technology Press, 1997: 137-189. (in Chinese)
    [6] Lee V W, Karl J. Diffraction of elastic plane P wave by circular underground unlined tunnels [J]. European Earthquake Engineering, 1993, 6(1): 29-36.
    [7] Lee V W, Sherif R I. Diffraction around circular canyon in elastic wedge space [J]. Journal of Engineering Mechanics, 1996, 122(6): 539-544.
    [8] Davis C A, Lee V W, Bardet J P. Transverse response of underground cavities and pipes to incident SV waves [J]. Earthquake Engineering & Structural Dynamics, 2001, 30(3): 383-410.
    [9] 张郁山. 圆弧状多层沉积谷地在平面P波入射下稳态响应的解析解[J]. 地球物理学报, 2008, 51(3): 869-880. Zhang Yushan. Analytical solution for the stationary response of alluvial valleys containing multiple circular-arc layers to incidence plane P waves [J]. Chinese Journal of Geophysics, 2008, 51(3): 869-880. (in Chinese)
    [10] 梁建文, 魏新磊, Vincent W LEE. 圆弧形沉积谷地对平面P波的三维散射解析[J]. 岩土力学, 2010, 31(2): 461-470. Liang Jianwen, Wei Xinlei, Vincent W LEE. 3-D scattering of plane P waves by a circular-arc alluvial valley [J]. Rock and Soil Mechanics, 2010, 31(2): 461-470.(in Chinese)
    [11] Liu D K, Gai B Z, Tao G Y. Applications of the method of complex functions to dynamic sress concentrations [J]. Wave Motion, 1982, 4(3): 293-304.
    [12] 赵嘉喜, 齐辉, 郭晶, 杨在林. 出平面线源荷载对半空间半圆形凸起的圆柱形弹性夹杂的散射[J]. 工程力学, 2008, 25(5): 235-240.Zhao Jiaxi, Qi Hui, Guo Jing, Yang Zailin. Scattering of out-plane line source load by a cylindrical elastic Inclusion with a semi-cylindrical hill in half space [J]. Engineering Mechanics, 2008, 25(5): 235-240. (in Chinese)
    [13] 杨在林, 刘殿魁, 孙柏涛, 许美娟. 半空间可移动刚性圆柱对SH波散射及动应力集中[J]. 工程力学, 2009, 26(4): 51-56.Yang Zailin, Liu Diankui, Sun Baitao, Xu Meijuan. Scattering of SH-waves and dynamic stress concentration by moving ragid cylinder in half space [J]. Engineering Mechanics, 2009, 26(4): 51-56. (in Chinese)
    [14] 南景富, 齐辉, 折勇. 垂直半空间界面裂纹及附近圆孔对SH波的散射[J]. 工程力学, 2009, 26(5): 245-256.
    Nan Jingfu, Qi Hui, Shi Yong. Scattering of SH-wave by interface crack and neighbouring circular cavity in bi-material vertical half-space [J]. Engineering Mechanics, 2009, 26(5): 245-256. (in Chinese)
    [15] 齐辉, 杨杰. SH波入射双相介质半空间浅埋任意位置圆形夹杂的动力分析[J]. 工程力学, 2012, 29(7): 320-327.Qi Hui, Yang Jie. Dynamic analysis for shallowly buried circular inclusions of arbitrary positions impacted by SH-wave in bi-material half-space [J]. Engineering Mechanics, 2012, 29(7): 320-327. (in Chinese)
    [16] 林宏, 刘殿魁. 半无限空间中圆形孔洞周围SH波的散射[J]. 地震工程与工程振动, 2002, 22(2): 9-16.Lin Hong, Liu Diankui. Scattering of SH-wave around circular cavity in half-space [J]. Earthquake Engineering and Engineering Vibration, 2002, 22(2): 9-16.
计量
  • 文章访问数:  257
  • HTML全文浏览量:  21
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-01
  • 修回日期:  2014-02-16
  • 刊出日期:  2014-10-24

目录

    /

    返回文章
    返回