[1] |
Lin Y K. Probabilistic theory of structural dynamics [M]. New York: McGraw-Hill, 1967: 293―332.
|
[2] |
Roberts J B, Spanos P D. Random vibration and statistical linearization [M]. New York: Dover, 2003: 1―16.
|
[3] |
朱位秋. 随机振动[M]. 北京: 科学出版社, 1992: 474―558. Zhu Weiqiu. Random vibration [M]. Beijing: Science Press, 1992: 474―558. (in Chinese)
|
[4] |
李桂青, 曹宏. 结构动力可靠度及其应用[M]. 北京: 地震出版社, 1993: 26―82. Li Guiqiing, Cao Hong. Structure dynamic reliability and its application in engineering[M]. Beijing: Earthquake Press, 1993: 16―82. (in Chinese)
|
[5] |
Crandall S H. First-crossing probabilities of the linear oscillator [J] . Journal of Sound and Vibration, 1970, 12(3): 285―299.
|
[6] |
Chen J B, Li J. Dynamic response and reliability analysis of non-linear stochastic structures [J]. Probabilistic Engineering Mechanics, 2005, 20(1): 33―44.
|
[7] |
Daubechies I. Ten lectures on wavelets [M]. Philadelphia: Society for Industrial and Applied Mathematics, 1992: 1―16.
|
[8] |
Basu B. Wavelet-based stochastic seismic response of a duffing oscillator [J]. Journal of Sound and Vibration, 2001, 245(2): 251―260.
|
[9] |
Basu B, Gupta V K. Seismic response of SDOF systems by wavelet modeling of nonstationary processes [J]. Journal of Engineering Mechanics-ASCE, 1998, 124(10): 1142―1150.
|
[10] |
Tratskas P, Spanos P D. Linear multi-degree-of-freedom system stochastic response by using the harmonic wavelet transform [J]. Journal of Applied Mechanics, 2003, 70(5): 724―731.
|
[11] |
Spanos P D, Kougioumtzoglou I A. Harmonic wavelets based statistical linearization for response evolutionary power spectrum determination [J]. Probabilistic Engineering Mechanics, 2012, 27(1): 57―68.
|
[12] |
Nason G P, von Sachs R, Kroisandt G. Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum [J]. Journal of The Royal Statistical Society Series B-Statistical Methodology, 2000, 62(2): 271―295.
|
[13] |
Newland D E. Harmonic and musical wavelets [J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1994, 444(1922): 605―620.
|
[14] |
Newland D E. Harmonic wavelet analysis [J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1993, 443(1917): 203―225.
|
[15] |
Priestley M. Power spectral analysis of non-stationary random processes [J]. Journal of Sound And Vibration, 1967, 6(1): 86―97.
|
[16] |
Spanos P D, Kougioumtzoglou I A. Harmonic wavelet-based statistical linearization of the Bouc-Wen hysteretic model [C]// Faber, Kohler and Nishijima. Proceedings of the 11th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP. London: Taylor & Francis Group, 2011: 2649―2656.
|
[17] |
Corotis R B, Vanmarcke E H, Cornell A C. First passage of nonstationary random processes [J]. Journal of the Engineering Mechanics Division, 1972, 98(2): 401―414.
|
[18] |
Vanmarcke E H. On the distribution of the first-passage time for normal stationary random processes [J]. Journal of applied mechanics, 42(1975): 215―220.
|
[19] |
Barbato M, Conte J P. Structural reliability applications of nonstationary spectral characteristics [J]. Journal of Engineering Mechanics, 2010, 137(5): 371―382.
|
[20] |
Li J, Chen J B. Stochastic Dynamics of Structures [M]. Singapore: John Wiley & Sons, 2009: 285―308.
|
[21] |
曹晖, 赖明, 白绍良. 地震地面运动局部谱密度的小波变换估计[J]. 工程力学, 2004, 21(5): 109―115. Cao Hui, Lai Ming, Bai Shaoliang. Estimation of local spectral density of earthquake ground motion based on wavelet transform [J]. Engineering Mechanics, 2004, 21(5): 109―115. (in Chinese)
|
[22] |
周广东, 丁幼亮, 李爱群, 孙鹏. 基于小波变换的非平稳脉动风时变功率谱估计方法研究[J]. 工程力学, 2013, 30(3): 89―97. Zhou Guangdong, Ding Youliang, Li Aiqun, Sun Peng. Estimation method of evolutionary power spectrum for non-stationary fluctuating wind using wavelet transforms [J]. Engineering Mechanics, 2013, 30(3): 89―97. (in Chinese)
|