铰接板机构运动分析的简便协调方程

蒋旭东, 邓华

蒋旭东, 邓华. 铰接板机构运动分析的简便协调方程[J]. 工程力学, 2015, 32(3): 126-133. DOI: 10.6052/j.issn.1000-4750.2013.09.0898
引用本文: 蒋旭东, 邓华. 铰接板机构运动分析的简便协调方程[J]. 工程力学, 2015, 32(3): 126-133. DOI: 10.6052/j.issn.1000-4750.2013.09.0898
JIANG Xu-dong, DENG Hua. SIMPLE COMPATIBILITY EQUATIONS FOR KINEMATIC ANALYSIS OF PIN-JOINTED PLATE MECHANISMS[J]. Engineering Mechanics, 2015, 32(3): 126-133. DOI: 10.6052/j.issn.1000-4750.2013.09.0898
Citation: JIANG Xu-dong, DENG Hua. SIMPLE COMPATIBILITY EQUATIONS FOR KINEMATIC ANALYSIS OF PIN-JOINTED PLATE MECHANISMS[J]. Engineering Mechanics, 2015, 32(3): 126-133. DOI: 10.6052/j.issn.1000-4750.2013.09.0898

铰接板机构运动分析的简便协调方程

详细信息
    作者简介:

    蒋旭东(1988―),男,浙江人,硕士生,从事空间结构研究(E-mail: jiang_xudong@163.com).

  • 中图分类号: TU33+9

SIMPLE COMPATIBILITY EQUATIONS FOR KINEMATIC ANALYSIS OF PIN-JOINTED PLATE MECHANISMS

  • 摘要: 一些新型空间结构的施工分析模型可以简化为铰接板机构,如Pantadome。利用三角形形状稳定性特点,将三条边长变化为零来表征三角形板单元的刚体位移。进而基于杆单元的协调方程,建立了一个简便的顶点铰接三角形板单元的机构位移协调方程,且给出了1阶和2阶协调矩阵。将四边形板单元划分为2个三角形板单元,通过引入单元四顶点共面条件,推导出平面四边形板单元的协调矩阵。理论上,利用该思路可构建任意平面多边形板单元的协调矩阵。针对该简便协调方程,进一步给出了求解铰接板机构运动路径的计算策略。对1个顶升施工的Pantadome和1个顶推施工的双坡网架的成形过程进行了数值模拟,结果表明该方法对于此类铰接板机构的运动路径分析有很高的精度。
    Abstract: The erection analysis models of some new spatial structures, such as Pantadome, can be simplified as pin-jointed plate mechanisms. The rigid body displacement of a triangular plate element is characterized by the un-elongation of its three sides due to the shape stability of a triangle. Based on the compatibility equation of a bar element, a simple compatibility equation of a triangular plate element with pin-jointed vertices is established. Its first- and second- order compatibility matrices are presented. By introducing four-vertex coplanar conditions, the compatibility matrices of a quadrangular plate element, which is divided into two triangular plate elements, are further deduced. Theoretically, the compatibility matrix of a planar arbitrarily polygonous plate element can be established by this way. As for the simple compatibility equations, a computational strategy is adopted to track the kinematic path of pin-jointed plate mechanisms. The erection processes of an up-jacked Pandadome and an incrementally-launched gable space frame are numerically simulated. The results indicate that the method presented possesses a high accuracy for solving the kinematic path of pin-jointed plate mechanisms.
  • [1] Pellegrino S, Calladine C R. Matrix analysis of statically and kinematically indeterminate frameworks [J]. International Journal of Solids and Structures, 1982, 22: 409―428.
    [2] Pellegrino S. Analysis of prestressed mechanisms [J]. International Journal of Solids and Structures, 1990, 26: 1329―1350.
    [3] 包红泽, 邓华. 铰接杆系机构稳定性条件分析[J]. 浙江大学学报(工学版), 2006, 40(1): 78―84.
    Bao Hongze, Deng Hua. Analysis of stability conditions for pin-bar mechanisms [J]. Journal of Zhejiang University (Engineering Science), 2006, 40(1): 78―84. (in Chinese)
    [4] 袁行飞, 董石麟. 索穹顶结构施工控制反分析[J]. 建筑结构学报, 2001, 22(2): 75―79.
    Yuan Xingfei, Dong Shilin. Inverse analysis of construction process of cable dome [J]. Journal of Building Structures, 2001, 22(2): 75―79. (in Chinese)
    [5] Kawaguchi M. Engineering aspects of space frames [C]// Current and emerging technologies of shell and spatial structures, In: Proceedings of the International Association of Space Structures Colloquium, Madrid, 1997: 51―62.
    [6] 沈金, 楼俊晖, 邓华. 杆系机构的可动性和运动分岔分析[J]. 浙江大学学报(工学版), 2009, 43(6): 1086―1089.
    Shen Jin, Lou Junhui, Deng Hua. Movability and kinematic bifurcation analysis for pin-bar mechanisms [J]. Journal of Zhejiang University (Engineering Science), 2009, 43(6): 1086―1089. (in Chinese)
    [7] Kumar P, Pellegrino S. Computation of kinematic paths and bifurcation points [J]. International Journal of Solids and Structures, 2000, 37(46): 7003―7026.
    [8] 邓华, 楼俊晖, 徐静. 铰接杆系机构的运动路径及其极值点跟踪-一种几何学方法[J]. 工程力学, 2009, 26(10): 30―36.
    Deng Hua, Lou Junhui, Xu Jing. Tracing kinematic paths and limit points of pin-bar mechanisms by a geometrical approach [J]. Engineering Mechanics, 2009, 26(10): 30―36. (in Chinese)
    [9] 徐静. 铰接杆系机构的运动形态研究[D]. 杭州: 浙江大学, 2007.
    Xu Jing. Studies on the kinematic morphology of pin-bar mechanisms [D]. Hangzhou: Zhejiang University, 2007. (in Chinese)
    [10] 蒋本卫, 邓华, 伍晓顺. 平面连杆机构的提升形态及稳定性分析[J]. 土木工程学报, 2010, 43(1): 13―21.
    Jiang Benwei, Deng Hua, Wu Xiaoshun. Kinematic state and stability analysis for planar linkages during lifting erection [J]. China Civil Engineering Journal, 2010, 43(1): 13―21. (in Chinese)
    [11] Tarnai T, Szabo J. On the exact equation of extensional, kinematically indeterminate assemblies [J]. Computers and Structures, 2000, 75: 145―155.
    [12] 徐荣桥. 结构分析的有限元法与MATLAB程序设计[M]. 北京: 人民交通出版社, 2006: 87―90.
    Xu Rongqiao. Finite element method in structural analysis and MATLAB programming [M]. Beijing: China Communications Press, 2006: 87―90. (in Chinese)
    [13] 同济大学数学系. 高等数学(下册) [M]. 第六版. 北京:高等教育出版社, 2007: 20―22.
    Department of Mathematics, Tongji University. Advanced Mathematics (Vol. 2) [M]. 6th ed. Beijing: Higher Education Press, 2007: 20―22. (in Chinese)
  • 期刊类型引用(2)

    1. 王玮,邓华. 基于几何稳定性的攀达穹顶顶升杆布置方法. 建筑结构学报. 2020(02): 107-114 . 百度学术
    2. 王玮,邓华,黄莉. 适用于“机构施工法”的网格结构划分策略. 浙江大学学报(工学版). 2019(07): 1407-1414 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  266
  • HTML全文浏览量:  17
  • PDF下载量:  78
  • 被引次数: 3
出版历程
  • 收稿日期:  2013-09-19
  • 刊出日期:  2015-03-24

目录

    /

    返回文章
    返回