集中载荷下四边固支正交各向异性矩形板的线性弯曲问题

肖闪闪, 陈普会

肖闪闪, 陈普会. 集中载荷下四边固支正交各向异性矩形板的线性弯曲问题[J]. 工程力学, 2015, 32(6): 28-32. DOI: 10.6052/j.issn.1000-4750.2013.12.1178
引用本文: 肖闪闪, 陈普会. 集中载荷下四边固支正交各向异性矩形板的线性弯曲问题[J]. 工程力学, 2015, 32(6): 28-32. DOI: 10.6052/j.issn.1000-4750.2013.12.1178
XIAO Shan-shan, CHEN Pu-hui. ANALYTICAL SOLUTIONS FOR BENDING OF CLAMPED ORTHOTROPIC RECTANGULAR PLATES UNDER A CONCENTRATED FORCE[J]. Engineering Mechanics, 2015, 32(6): 28-32. DOI: 10.6052/j.issn.1000-4750.2013.12.1178
Citation: XIAO Shan-shan, CHEN Pu-hui. ANALYTICAL SOLUTIONS FOR BENDING OF CLAMPED ORTHOTROPIC RECTANGULAR PLATES UNDER A CONCENTRATED FORCE[J]. Engineering Mechanics, 2015, 32(6): 28-32. DOI: 10.6052/j.issn.1000-4750.2013.12.1178

集中载荷下四边固支正交各向异性矩形板的线性弯曲问题

基金项目: 国家自然科学基金项目(A020305)
详细信息
    作者简介:

    肖闪闪(1985―),女,湖北人,博士生,主要从事复合材料飞机结构损伤容限研究(E-mail: xiaoshanshan721@126.com).

    通讯作者:

    陈普会(1964―),男,江苏人,教授,博士,博导,主要从事复合材料飞机结构设计(E-mail: phchen@nuaa.edu.cn).

  • 中图分类号: V250.1

ANALYTICAL SOLUTIONS FOR BENDING OF CLAMPED ORTHOTROPIC RECTANGULAR PLATES UNDER A CONCENTRATED FORCE

  • 摘要: 采用载荷叠加法将集中载荷下四边固支正交各向异性矩形板线性弯曲的挠度分为3个部分:集中载荷下四边简支板的挠度、上下边简支左右边受弯矩的板的挠度、左右边简支上下边受弯矩的板的挠度,3个挠度之和在满足固支边界条件的情况下即为所要求的挠度的解。采用MATLAB软件编写程序进行计算,并将相同长宽的板在4种不同的厚度和载荷情况下的挠度计算结果与有限元分析结果进行比较,验证了解析解的正确性。最后讨论了经典的Kirchhoff薄板假设对于集中载荷的适用性问题。
    Abstract: For a clamped orthotropic rectangular plate, the bending deflection due to a concentrated force can be treated as the superposition of deflections of simply supported plate under three load cases, a concentrated force, moments along two opposite edges and moments along the other two opposite edges. The solution satisfies the boundary conditions of the clamped plate. Matlab program is developed for calculating the deflections of four plates with different thickness and concentrated force positions. The analytical solutions are compared with Finite Element Method results, demonstrating the accuracy of the proposed solution. Finally, the reasonability of Kirchhoff plate assumptions is discussed through the case of clamped plate under a concentrated force.
  • [1] Timoshenko S, Woinowsky-Krieger S. Theory of plates and shells [M]. 2nd ed. New York: McGraw-Hill, 1959: 105―225.
    [2] Lekhnitskii S G. Anisotropic plates [M]. 2nd ed. New York: Gordon and Breach, 1968: 241―345.
    [3] Mbakogu F C, Pavlović M N. Bending of clamped orthotropic rectangular plates: A variational symbolic solution [J]. Computers & Structures, 2000, 77(2): 117―128.
    [4] 杨加明, 孙良新, 雷呈凤. 三边夹紧一边铰支正交各向异性矩形薄板的几何非线性分析[J]. 工程力学, 2002, 19(3): 39―43. Yang Jiaming, Sun Liangxin, Lei Chengfeng. Geometrically nonlinear analysis of orthotropic rectangular thin plates with three edges clamped and one edge simply supported [J]. Engineering Mechanics, 2002, 19(3): 39―43. (in Chinese)
    [5] Green A E. Double Fourier series and boundary value problems [C]// Dunajski M, Kryński W. Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge: Cambridge University Press, 1944, 40(3): 222―228.
    [6] Dickinson S M. The flexural vibration of rectangular orthotropic plates [J]. Journal of Applied Mechanics, 1969, 36(1): 101―106.
    [7] Whitney J M. Fourier analysis of clamped anisotropic plates [J]. Journal of Applied Mechanics, 1971, 38: 530―532.
    [8] Hencky H. Über ein einfaches näherungsverfahren zur bestimmung des spannungszustandes in rechteckig begrenzten scheiben, auf deren umfang nur normalspannungen wirken [M]// Von Karman T. Beiträge Zur Technischen Mechanik und Technischen Physik. Heidelberg, Springer Berlin Heidelberg, 1924: 62―73.
    [9] Galerkin B G. Rectangular plates supported by edges [M]. Moscow: Collected Papers, 1953: 3―42.
    [10] Bhaskar K, Kaushik B. Simple and exact series solutions for flexure of orthotropic rectangular plates with any combination of clamped and simply supported edges [J]. Composite Structures, 2004, 63(1): 63―68.
    [11] Bhaskar K, Kaushik B. Analysis of clamped unsymmetric cross-ply rectangular plates by superposition of simple exact double Fourier series solutions [J]. Composite Structures, 2005, 68(3): 303―307.
    [12] Baraigi N K. A text book of plate analysis [M]. Delhi: Khanna Publishers, 1986: 2―6.
  • 期刊类型引用(5)

    1. 苏哲. 集中载荷作用下四边固接矩形薄板的刚度计算方法. 计算机辅助工程. 2022(01): 10-13 . 百度学术
    2. 李壮飞,寇子琦,刘海,侯钢领,王滨生. 矩形板受分布荷载作用下的解析解. 青岛理工大学学报. 2021(03): 28-35+62 . 百度学术
    3. 杨成永,马文辉,韩薛果,程霖. 局部均布荷载作用下四边支承矩形板的内力计算. 湖南大学学报(自然科学版). 2020(11): 114-119 . 百度学术
    4. 庞瑞,许清风,梁书亭,朱筱俊,吴见丰. 分布式连接全装配RC楼盖竖向承载力与变形分析. 工程力学. 2019(04): 147-157 . 本站查看
    5. 周晓松,张焱冰,梅志远. 复合材料球形阵列结构压入力学模型及弯曲变形协调机制. 北京理工大学学报. 2019(06): 583-588+596 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  310
  • HTML全文浏览量:  28
  • PDF下载量:  131
  • 被引次数: 12
出版历程
  • 收稿日期:  2013-12-17
  • 修回日期:  2014-06-17
  • 刊出日期:  2015-06-24

目录

    /

    返回文章
    返回