谱元法与透射边界的配合使用及其稳定性研究

戴志军, 李小军, 侯春林

戴志军, 李小军, 侯春林. 谱元法与透射边界的配合使用及其稳定性研究[J]. 工程力学, 2015, 32(11): 40-50. DOI: 10.6052/j.issn.1000-4750.2014.03.0196
引用本文: 戴志军, 李小军, 侯春林. 谱元法与透射边界的配合使用及其稳定性研究[J]. 工程力学, 2015, 32(11): 40-50. DOI: 10.6052/j.issn.1000-4750.2014.03.0196
DAI Zhi-jun, LI Xiao-jun, HOU Chun-lin. A COMBINATION USAGE OF TRANSMITTING FORMULA AND SPECTRAL ELEMENT METHOD AND THE STUDY OF ITS STABILITY[J]. Engineering Mechanics, 2015, 32(11): 40-50. DOI: 10.6052/j.issn.1000-4750.2014.03.0196
Citation: DAI Zhi-jun, LI Xiao-jun, HOU Chun-lin. A COMBINATION USAGE OF TRANSMITTING FORMULA AND SPECTRAL ELEMENT METHOD AND THE STUDY OF ITS STABILITY[J]. Engineering Mechanics, 2015, 32(11): 40-50. DOI: 10.6052/j.issn.1000-4750.2014.03.0196

谱元法与透射边界的配合使用及其稳定性研究

基金项目: 973计划项目(2011CB013601); 国家自然科学基金项目(91215301,61203276,61472373); 中国地震局地球物理研究所基本科研项目(DQJB12B12); 北京市属高等学校创新团队建设提升计划项目(IDHT20130507)
详细信息
    作者简介:

    戴志军(1981―),男,湖南慈利人,副研究员,博士,主要从事地震工程研究(E-mail: dzj@cea-igp.ac.cn); 侯春林(1981―),女,河南郸城人,高工,博士,主要从事核电结构工程研究(E-mail: hou_chunlin@163.com).

    通讯作者:

    李小军(1965―),男,湖南临湘人,研究员,博士,博导,主要从事结构工程与防灾减灾工程(E-mail: beerli@vip.sina.com).

A COMBINATION USAGE OF TRANSMITTING FORMULA AND SPECTRAL ELEMENT METHOD AND THE STUDY OF ITS STABILITY

  • 摘要: 在无限域波动模拟中引入透射边界条件时,目前多将边界上的透射公式与内域的有限元法结合使用,其计算精度由有限元方法决定,而谱元法因结合有限元和频谱法的优势则比有限元空间域积分具有更高的计算精度。该文基于谱元法非等距网格划分特性,研究了内域的谱元法与边界上的透射公式结合的理论方法,给出了相应的透射公式使用方法,并基于建立的谱元法波动数值模型探讨了透射公式的稳定性问题。研究表明:空间域插值系数需控制在一个合理范围内,空间域插值方法相对于时间域插值方法更为稳定,高频失稳出现可能性相对较小;Gamma算子的使用可提高模拟的精度,采用Gamma算子后对于高阶透射公式仍可出现低频漂移现象,可结合降阶消漂的方式实现稳定精度高的透射边界应用。
    Abstract: For the simulation of the problem on infinite domain, finite element method (FEM) is usually combined with transmitting formulas, and the precision of the simulation is mainly determined by the FEM methods. Spectral element method (SEM) takes advantages of both spectral method and FEM, and achieves higher precision for integration in space domain compared with FEM. This paper investigates the application of transmitting formulas in details when the interior domain uses the method of SEM. In this paper, we illustrate the use of SEM with transmitting formulas firstly. Meanwhile, the stability problem of transmitting formula is discussed in depth. The high frequency instability occurs more frequently for the interpolation in the time domain than in the space domain, and the interpolation coefficient in space domain should be in an appropriate range. Recognizing that the gamma operator is an effective measure to enhance the precision of simulation, we give a concrete method to set the value of gamma. Higher-order transmitting formulas with gamma operator may result in low-frequency drift. The paper points out that using order-reduction method is effective to get stable transmitting boundary conditions with high precision.
  • [1] Virieux J. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method [J]. Geophysics, 1986, 51(4): 889―901.
    [2] Fajardo K, Papageorgiou A S. Wave propagation in unbounded elastic domains using the spectral element method: Formulation [J]. Earthquake and Structures, 2012, 3(3/4): 383―411.
    [3] Alterman Z, Karal F. Propagation of elastic waves in layered media by finite difference methods [J]. Bulletin of the Seismological Society of America, 1968, 58(1): 367―398.
    [4] 廖振鹏. 工程波动理论导论[M]. 北京: 科学出版社, 2002: 136―277. Liao Zhengpeng. Introduction to Wave Theory Engineering [M]. Beijing: Science Press, 2002: 136―277. (in Chinese)
    [5] Givoli D. High-order local non-reflecting boundary conditions: A review [J]. Wave Motion, 2004, 39(4): 319―326.
    [6] Lysmer J, Kuhlemeyer R. Finite dynamic model for infinite media [J]. Journal of Engineering Mechanics- Asce (Journal of the Engineering Mechanics Division), 1969, 95: 859―877.
    [7] Deeks A J, Randolph M F. Axisymmetric time-domain transmitting boundaries [J]. Journal of Engineering Mechanics, 1994, 120(1): 25―42.
    [8] 刘晶波, 王振宁, 杜修力, 等. 波动问题中的三维时域粘弹性人工边界[J]. 工程力学, 2005, 22(6): 46―51. Liu Jingbo, Wang Zhenning, Du Xiuli, et al. Three-dimensional visco-elastic artificial boundaries in time domain for wave motion problems [J]. Engineering Mechanics, 2005, 22(6): 46―51. (in Chinese)
    [9] Engquist B, Majda A. Absorbing boundary conditions for numerical simulation of waves [J]. Proceedings of the National Academy of Sciences, 1977, 74(5): 1765―1766.
    [10] Clayton R, Engquist. Absorbing boundary conditions for acoustic and elastic wave equations [J]. Bulletin of the Seismological Society of America, 1977, 67(6): 1529―1540.
    [11] 廖振鹏, 周正华, 张艳红, 等. 波动数值模拟中透射边界的稳定实现[J]. 地球物理学报, 2002, 45(4): 533―545. Liao Zhenpeng, Zhou Zhenghua, Zhang Yanhong, et al. Transmitting boundary in numerical simulation of wave motion stability [J]. Chinese Journal of Geophysics, 2002, 45(4): 533―545. (in Chinese)
    [12] 李小军, 廖振鹏, 杜修力, 等. 有阻尼体系动力问题的一种显示差分解法[J]. 地震工程与工程振动, 1992, 4(12): 387―392. Li Xiaojun, Liao Zhenpeng, Du Xiuli, et al. A finite difference method for viscoelastic dynamic problems [J]. Earthquake Engineering and Engineering Vibration, 1992, 4(12): 387―392. (in Chinese)
    [13] 李小军. 非线性场地地震反应分析方法的研究[D]. 北京: 中国地震局工程力学研究所, 1993. Li Xiaojun. Study on the method for analyzing the earthquake response of nonlinear site [D]. Beijing: Institute of Engineering Mechanics, China Earthquake Administration, 1993. (in Chinese)
    [14] 李小军, 廖振鹏. 时域局部透射边界的计算飘移失稳[J]. 力学学报, 1996, 28(5): 627―632. Li Xiaojun, Liao Zhenpeng. Calculate the drift instability of local transmitting boundary in time domain [J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(5): 627―632. (in Chinese)
    [15] 周正华, 廖振鹏. 修正算子 的物理含义解释[J]. 地震工程与工程振动, 2005, 24(5): 17―19. Zhou Zhenghua, Liao Zhenpeng. The interpretation of physical implication of modified operator [J]. Earthquake Engineering and Engineering Vibration, 2005, 24(5): 17―19. (in Chinese)
    [16] Higdon R L. Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation [J]. Matherntics of Computation, 1986, 47(176): 437―459.
    [17] Higdon R L. Numerical absorbing boundary conditions for the wave equation [J]. Matherntics of Computation, 1987, 49(179): 65―90.
    [18] Higdon R L. Absorbing boundary conditions for acoustic and elastic waves in stratified media [J]. Journal of Computational Physics, 1992, 101(2): 386―418.
    [19] Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves [J]. Journal of Computational Physics, 1994, 114(2): 185―200.
    [20] Chew W C, Weedon W H. A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates [J]. Microwave and Optical Technology Letters, 1994, 7(13): 599―604.
    [21] Taflove A, Hagness S C. Computational electrodynamics: The FDTD Method [M]. London: Artech House Boston, 2000.
    [22] Komatitsch D, Martin R. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation [J]. Geophysics, 2007, 72(5): SM155―SM167.
    [23] Meza-Fajardo K C, Papageorgiou A S. A nonconvolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: Stability analysis [J]. Bulletin of the Seismological Society of America, 2008, 98(4): 1811― 1836.
    [24] Malvern L E. Introduction to the Mechanics of a Continuous Medium [M]. Englewood, New Jersey: Prentice-Hall, Inc., 1969.
    [25] Mooney H M. Some numerical solutions for Lamb’s problem [J]. Bulletin of the Seismological Society of America, 1974, 64(2): 473―491.
    [26] 孙虎, 周丽. 基于谱元法的裂纹梁Lamb波传播特性研究[J]. 工程力学, 2012, 29(9): 50―55. Sui Hu, Zhou Li. Lamb wave propagation in a cracked beam using spectral finite element method [J]. Engineering Mechanics, 2012, 29(9): 50―55. (in Chinese)
  • 期刊类型引用(9)

    1. 于彦彦,丁海平,芮志良. 二维层状盆地地震动附加放大特征研究:SV波入射. 振动与冲击. 2024(04): 166-178 . 百度学术
    2. 李小军,张恂,邢浩洁. 基于动态人工波速的透射边界. 力学学报. 2024(10): 2924-2935 . 百度学术
    3. 邢浩洁,刘爱文,李小军,陈苏,傅磊. 多人工波速优化透射边界在谱元法地震波动模拟中的应用. 地震学报. 2022(01): 26-39 . 百度学术
    4. 邢浩洁,李小军,刘爱文,李鸿晶,周正华,陈苏. 弹性波模拟中局部透射边界的反射特征及参数优化. 振动与冲击. 2022(12): 301-312 . 百度学术
    5. 章旭斌,谢志南. 波动谱元模拟中透射边界稳定性分析. 工程力学. 2022(10): 26-35 . 本站查看
    6. 邢浩洁,李鸿晶,李小军. 一维波动有限元模拟中透射边界的时域稳定条件. 应用基础与工程科学学报. 2021(03): 617-632 . 百度学术
    7. 赵密,邵伟昂,黄景琦,杜修力,王媛. 圆形隧道横断面地震响应简化解析方法的数值验证. 工程力学. 2020(09): 84-93 . 本站查看
    8. 邢浩洁,李鸿晶. 透射边界条件在波动谱元模拟中的实现:一维波动. 力学学报. 2017(02): 367-379 . 百度学术
    9. 邢浩洁,李鸿晶. 透射边界条件在波动谱元模拟中的实现:二维波动. 力学学报. 2017(04): 894-906 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  373
  • HTML全文浏览量:  24
  • PDF下载量:  93
  • 被引次数: 13
出版历程
  • 收稿日期:  2014-03-16
  • 修回日期:  2014-12-18
  • 刊出日期:  2015-11-24

目录

    /

    返回文章
    返回