考虑参数更新的大跨桥梁温差极值分布估计方法研究

张欢, 周广东, 吴二军

张欢, 周广东, 吴二军. 考虑参数更新的大跨桥梁温差极值分布估计方法研究[J]. 工程力学, 2017, 34(3): 124-130. DOI: 10.6052/j.issn.1000-4750.2015.08.0717
引用本文: 张欢, 周广东, 吴二军. 考虑参数更新的大跨桥梁温差极值分布估计方法研究[J]. 工程力学, 2017, 34(3): 124-130. DOI: 10.6052/j.issn.1000-4750.2015.08.0717
ZHANG Huan, ZHOU Guang-dong, WU Er-jun. STATISTICAL MODEL ESTIMATION OF EXTREME THERMAL GRADIENTS IN LONG-SPAN BRIDGES COMBINING PARAMETER UPDATING[J]. Engineering Mechanics, 2017, 34(3): 124-130. DOI: 10.6052/j.issn.1000-4750.2015.08.0717
Citation: ZHANG Huan, ZHOU Guang-dong, WU Er-jun. STATISTICAL MODEL ESTIMATION OF EXTREME THERMAL GRADIENTS IN LONG-SPAN BRIDGES COMBINING PARAMETER UPDATING[J]. Engineering Mechanics, 2017, 34(3): 124-130. DOI: 10.6052/j.issn.1000-4750.2015.08.0717

考虑参数更新的大跨桥梁温差极值分布估计方法研究

基金项目: 国家自然科学基金项目(51678218);中国博士后科学基金项目(2014M560387)
详细信息
    作者简介:

    张欢(1992-),女,江苏人,硕士生,主要从事结构健康监测研究(E-mail:zhhuan1214@163.com);吴二军(1972-),男,河北人,副教授,博士,主要从事工程结构平移、加固改造与监测研究(E-mail:wej@hhu.edu.cn).

    通讯作者:

    周广东(1982-),男,四川人,副教授,博士,主要从事结构健康监测研究(E-mail:zhougd@hhu.edu.cn).

  • 中图分类号: U442

STATISTICAL MODEL ESTIMATION OF EXTREME THERMAL GRADIENTS IN LONG-SPAN BRIDGES COMBINING PARAMETER UPDATING

  • 摘要: 为了建立可靠的大跨桥梁全寿命温差极值分布模型,提出采用广义帕累托分布(Generalized Pareto Distribution,GPD)对超阈值温差的统计特征进行描述,并给出了超阈值温差样本相关性的去除方法和最优阈值的确定方法。为了融合温差分布的先期经验信息和不断递增的温差监测样本,建立了考虑参数更新的贝叶斯估计方法,利用Gibbs抽样对贝叶斯后验分布进行计算,进而得到准确的基于广义帕累托分布的温差极值分布模型。最后利用九堡大桥长期监测温差数据进行了验证。研究结果表明,广义帕累托分布能够对超阈值温差样本的尾部统计特征进行准确描述,提出的考虑参数更新的温差极值分布贝叶斯估计方法能够对广义帕累托分布的参数进行可靠估计,估计的统计模型比极大似然估计计算的结果更接近真实情况。研究结果可为大跨桥梁温差特性分析提供参考。
    Abstract: In order to establish the reliable statistical models for extreme thermal gradients in long-span bridges during their life-cycles, a generalized Pareto distribution (GPD) is proposed to describe the statistical features of thermal gradient samples that excess a threshold. And the procedure of excluding correlation in thermal gradient samples and the approach of selecting the best threshold are suggested. A Bayesian estimation method combining parameter updating for finding a GPD-based extreme thermal gradient model is developed to fuse prior information and incoming monitoring data. In this method, the Gibbs sampling is employed for computing the Bayesian posterior distribution. The developed method is verified by the thermal gradient data monitored on the Jiubao Bridge. The results indicate that the GDP has strong ability in describing the statistical characteristics of thermal gradients, especially in the tail region, and the Bayesian estimation method combining parameter updating provides more reasonable parameters for the GDP than the maximum likelihood estimation method. The outcomes of this paper are expected to offer a reference for the study of thermal gradients in long-span bridges.
  • [1] Zhou G D, Yi T H. Thermal load in large-scale bridges:a state-of-the-art review[J]. International Journal of Distributed Sensor Networks, 2013, Article ID 217983:1-17.
    [2] 王高新, 丁幼亮, 李爱群, 等. 基于长期监测数据的润扬大桥斜拉桥钢箱梁横向温差特性研究[J]. 工程力学, 2013, 30(1):163-167. Wang Gaoxin, Ding Youliang, Li Aiqun, et al. Characteristics of transverse temperature differences of steel box girder in Runyang cable-stayed bridge using long-term monitoring[J]. Engineering Mechanics, 2013, 30(1):163-167. (in Chinese)
    [3] Mirambell E, Aguado A. Temperature and stress distributions in concrete box girder bridges[J]. Journal of Structural Engineering, 1990, 116(9):23882-409.
    [4] 孙国晨, 关荣财, 姜英民, 等. 钢-混凝土叠合梁横截面日照温度分布研究[J]. 工程力学, 2006, 23(11):122-128. Sun Guochen, Guan Rongcai, Jiang Yingmin, et al. Sunshine-induced temperature distribution on cross section of steel-concrete composite beams[J]. Engineering Mechanics, 2006, 23(11):122-128. (in Chinese)
    [5] 张玉平, 杨宁, 李传习. 无铺装层钢箱梁日照温度场分析[J]. 工程力学, 2011, 28(6):156-162. Zhang Yuping, Yang Ning, Li Chuanxi. Research on temperature field of steel box girder without pavement caused by the solar radiations[J]. Engineering Mechanics, 2011, 28(6):156-162. (in Chinese)
    [6] 任志刚, 胡曙光, 丁庆军. 太阳辐射模型对钢管混凝土墩柱温度场的影响研究. 工程力学, 2010, 27(4):246-251. Ren Zhigang, Hu Shuguang, Ding Qingjun. Research on the effect of solar radiation model on temperature field of concrete-filled steel tube ier[J]. Engineering Mechanics, 2010, 27(4):246-251. (inChinese)
    [7] Tong M, Tham L G, Au F T K. Extreme thermal loading on steel bridges in tropical region[J]. Journal of Bridge Engineering, 2002, 7(6):357-366.
    [8] Chang-Kyun Im, Sung-Pil Chang. Estimating extreme thermal loads in composite bridge using long-term measurement data[J]. Steel Structures, 2004, 4:25-31.
    [9] Li D, Maes M A, Dilger W H. Thermal design criteria for deep prestressed concrete girders based on data from confederation bridge[J]. Canadian Journal of Civil Engineering, 2004, 31(5):813-825.
    [10] 雷笑, 叶见曙, 王毅. 日照作用下混凝土箱梁的温差代表值[J]. 东南大学学报(自然科学版), 2008, 38(6):1105-1109. Lei Xiao, Ye Jianshu, Wang Yi. Representative value of solar thermal difference effect on PC box-girder[J]. Journal of Southeast University (Natural Science Edition), 2008, 38(6):1105-1109. (in Chinese)
    [11] 叶见曙, 雷笑, 王毅. 基于统计分析的混凝土箱梁温差标准值研究[J]. 公路交通科技, 2009, 26(11):50-54. Ye Jianshu, Lei Xiao, Wang Yi. Study of characteristic value of thermal difference of concrete box girder based on statistical analysis[J]. Journal of Highway and Transportation Research and Development, 2009, 26(11):50-54. (in Chinese)
    [12] Ding Y, Zhou G, Li A, Wang G. Thermal field characteristic analysis of steel box girder based on long-term measurement data[J]. International Journal of Steel Structures, 2012, 12(2):219-232.
    [13] Brabson B B, Palutikof J P. Tests of the generalized Pareto distribution for predicting extreme wind speeds[J]. Journal of Applied Meteorology, 2000, 39(9):1627-1640.
    [14] Pisarenko V F, Sornette D. Characterization of the frequency of extreme earthquake events by the generalized Pareto distribution[J]. Pure and Applied Geophysics, 2003, 160(12):2343-2364.
    [15] Holmes J D, Moriarty W W. Application of the generalized Pareto distribution to extreme value analysis in wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83(1):1-10.
    [16] 李彬彬. 基于极值理论与Copula函数的水文极值分析[D]. 郑州:华北水利水电学院, 2012. Li Binbin. Hydrological extreme value analysis based on extreme value theory and copula functions[D]. Zhengzhou:North China University of Water Resources and Electric Power, 2012. (in Chinese)
    [17] 王灿. 基于极值统计的洪水频率分析模型及其应用研究——以洞庭湖地区为例[D]. 长沙:湖南师范大学, 2013. Wang Can. Applied research of the model of flood frequency analysis based on extreme value statistics——Taking Dongting Lake area as an example[D]. Changsha:Hunan Normal University, 2013. (in Chinese)
    [18] 陈龙. 基于小容量样本的屋盖极值风荷载估计方法研究[D]. 哈尔滨:哈尔滨工业大学, 2013. Chen Long. Research on methods for estimating extreme wind loads on roofs with minority samples[D]. Harbin:Harbin Institute of Technology, 2013. (in Chinese)
    [19] 杨思博. 基干极值统计理论的屋盖围护结构设计风荷载[D]. 北京:北京交通大学, 2013. Yang Sibo. Design wind load on claddings of large-span roof based on extreme value theory[D]. Beijing:Beijing Jiaotong University, 2013. (in Chinese)
    [20] 李正农, 伍欢庆. 风压极值的阈值模型研究[J]. 地震工程与工程振动, 2015, 35(1):189-198. Li Zhengnong,Wu Huanqing. A study on extreme wind pressure:POT model[J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(1):189-198. (in Chinese)
    [21] Gu Y, Li S, Li H, et al. A novel Bayesian extreme value distribution model of vehicle loads incorporating de-correlated tail fitting:Theory and application to the Nanjing 3rd Yangtze River Bridge[J]. Engineering Structures, 2014, 59:386-392.
    [22] Beck J L, Yuen K V. Model selection using response measurements:Bayesian probabilistic approach[J]. Journal of Engineering Mechanics, 2004, 130(2):192-203.
    [23] Samule Kotz, 吴喜之. 现代贝叶斯统计学[M]. 北京:中国统计出版社, 2000:9-25. Samule Kotz, Wu Xizhi. Modern Bayesian statistics[M]. Beijing:China Statistics Press, 2000:9-25. (in Chinese)
    [24] Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984(6):721-741.
    [25] Zhou G D, Yi T H, Chen B, et al. Analysis of three-dimensional thermal gradients for arch bridge girders using long-term monitoring data[J]. Smart Structures and Systems, 2015, 15(2):469-488.
  • 期刊类型引用(6)

    1. 勾红叶,陈子豪,刘畅,肖畅,袁蔚,苏延文. 基于实测数据的高海拔大日温差地区拱上组合梁桥-无砟轨道体系温度场研究. 铁道学报. 2024(02): 159-170 . 百度学术
    2. 程磊,陆蔺,卜树坡. 基于运行误差估算的电能表准确性预计. 电测与仪表. 2022(04): 49-54 . 百度学术
    3. 马志元,刘江,刘永健,吕毅,张国靖. 钢-混组合梁桥有效温度取值的地域差异性. 浙江大学学报(工学版). 2022(05): 909-919 . 百度学术
    4. 刘江,刘永健,马志元,张国靖,吕毅. 钢—混凝土组合梁桥的温度梯度作用——作用模式与极值分析. 中国公路学报. 2022(09): 269-286 . 百度学术
    5. 闫新凯,刘永健,刘江,白永新,张宸瑜,马志元. 钢板组合梁温度作用的极值统计模型. 东南大学学报(自然科学版). 2022(05): 856-865 . 百度学术
    6. 戴公连,唐宇,梁金宝. 基于广义帕累托分布的桥墩温度荷载极值研究. 桥梁建设. 2017(06): 48-53 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  333
  • HTML全文浏览量:  28
  • PDF下载量:  119
  • 被引次数: 11
出版历程
  • 收稿日期:  2015-08-30
  • 修回日期:  2016-01-13
  • 刊出日期:  2017-03-24

目录

    /

    返回文章
    返回