一种高效的准二维管道瞬变流计算方法

孙强, 伍悦滨, 徐莹, JANG Tae Uk

孙强, 伍悦滨, 徐莹, JANG Tae Uk. 一种高效的准二维管道瞬变流计算方法[J]. 工程力学, 2017, 34(9): 34-42. DOI: 10.6052/j.issn.1000-4750.2016.04.0242
引用本文: 孙强, 伍悦滨, 徐莹, JANG Tae Uk. 一种高效的准二维管道瞬变流计算方法[J]. 工程力学, 2017, 34(9): 34-42. DOI: 10.6052/j.issn.1000-4750.2016.04.0242
SUN Qiang, WU Yue-bin, XU Ying, JANG Tae Uk. AN EFFICIENT METHOD FOR QUASI-TWO-DIMENSIONAL WATER-HAMMER SIMULATION[J]. Engineering Mechanics, 2017, 34(9): 34-42. DOI: 10.6052/j.issn.1000-4750.2016.04.0242
Citation: SUN Qiang, WU Yue-bin, XU Ying, JANG Tae Uk. AN EFFICIENT METHOD FOR QUASI-TWO-DIMENSIONAL WATER-HAMMER SIMULATION[J]. Engineering Mechanics, 2017, 34(9): 34-42. DOI: 10.6052/j.issn.1000-4750.2016.04.0242

一种高效的准二维管道瞬变流计算方法

基金项目: 国家自然科学基金项目(51208160);省高校青年创新人才培养计划项目(UNPYSCT-2015072)
详细信息
    作者简介:

    孙强(1985-),男,黑龙江五常人,博士,主要从事管道瞬变流和气液两相瞬变流模拟研究(E-mail:sunqiang1222@163.com);徐莹(1981-),女,黑龙江哈尔滨人,副教授,博士,主要从事石油管道瞬变流模拟研究(E-mail:joexying@126.com);Jang Tae Uk (1962-),男,朝鲜平壤人,副教授,博士,主要从事计算流体力学相关领域研究(E-mail:jtu_rns@163.com).

    通讯作者:

    伍悦滨(1966-),女,江西南昌人,教授,博士,主要从事瞬变流模拟研究(E-mail:ybwu@hit.edu.cn).

  • 中图分类号: TV134.1

AN EFFICIENT METHOD FOR QUASI-TWO-DIMENSIONAL WATER-HAMMER SIMULATION

  • 摘要: 为了提高准二维管道瞬变流模型的计算效率,对现有的基于特征线法的准二维模型的算法进行了改进,提出了直接利用一维显式方程计算管道的流量和压力,取代了原算法中需通过数值积分求解平均速度再进一步计算节点压力的方法。该文提出的一维显式方程采用FVS (Flux Vector Splitting)方法,并在水库-管道-阀门系统中,将该方法与两个现有的准二维模型的算法在准确性和计算效率方面进行了比较。结果表明:该文所提出的方法与另外两个算法得到的计算结果基本相同,但是所花费的计算时间更少。因此,该文所提出的方法是一种计算准确并且高效的准二维瞬变流计算方法,适用于管道系统瞬变流的数值模拟分析。
    Abstract: In order to increase the computational efficiency of quasi-two-dimensional (quasi-2D) water-hammer models, a method that improves upon an existing quasi-2D scheme in the method of characteristics (MOC) is presented. The proposed method uses one-dimensional (1D) explicit equations to calculate pressure head and discharge, rather than using numerical integration to solve mean velocity as employed in the existing scheme. The 1D explicit equations are developed, based on the flux vector splitting (FVS) method. In a reservoir-pipeline-valve system, the comparisons between the proposed method and two existing quasi-2D schemes show that the proposed method gives virtually the same results as the other two quasi-2D schemes do, but costs less computational time. Therefore, the proposed method is able to simulate transient flow problems with high accuracy and efficiency.
  • [1] 楼云锋, 曹源, 杨颜志, 等. 基于混合模型方法的大型输水隧道水锤冲击响应数值分析[J]. 工程力学, 2016, 33(2):224-231. Lou Yunfeng, Cao Yuan, Yang Yanzhi, et al. Application of hybrid modeling method to simulate water hammer impacts in ultra-large water conveyance tunnel[J]. Engineering Mechanics, 2016, 33(2):224-231. (in Chinese)
    [2] 梁峰, 包日东. 输流管道含有内共振的横向受迫振动研究[J]. 工程力学, 2015, 32(4):185-190. Liang Feng, Bao Ridong. Transverse forced vibration with internal resonance of a pipe conveying fluid[J]. Engineering Mechanics, 2015, 32(4):185-190. (in Chinese)
    [3] 李俊花, 孙昭晨, 崔莉. 一种新的长输管道泄漏监测方法[J]. 工程力学, 2009, 26(8):205-209. Li Junhua, Sun Zhaochen, Cui Li. A new leakage monitoring method for long-distance pipeline[J]. Engineering Mechanics, 2009, 26(8):205-209. (in Chinese)
    [4] Chaudhry M H. Applied hydraulic transients[M]. 3rd ed. New York:Springer, 2014:55.
    [5] Wylie E B, Streeter V L. Fluid Transients in systems[M]. New Jersey:Prentice-Hall, 1993:41.
    [6] Ghidaoui M S, Zhao M, Mclnnis D A, et al. A review of water hammer theory and practice[J]. Applied Mechanics Reviews, 2005, 58(1):49-76.
    [7] Bergant A, Simpson A R, Vitkovsky J. Developments in unsteady pipe flow friction modelling[J]. Journal of Hydraulic Research, 2001, 39(3):249-257.
    [8] Brunone B, Karney B W, Mecarelli M, et al. Velocity profiles and unsteady pipe friction in transient flow[J]. Journal of Water Resources Planning Management, 2000, 126(4):236-244.
    [9] Vardy A E, Brown J M B. Transient, turbulent, smooth pipe friction[J]. Journal of Hydraulic Research, 1995, 33(4):435-456.
    [10] Vardy A E, Brown J M B. Transient turbulent friction in fully rough pipe flows[J]. Journal of Sound and Vibration, 2004, 270(1/2):233-257.
    [11] Ohmi M, Kyomen S, Usui T. Numerical analysis of transient turbulent flow in a liquid line[J]. Bulletin of the Japan Society of Mechanical Engineers, 1985, 28(239):799-806.
    [12] Vardy A E, Hwang K L. A characteristics model of transient friction in pipes[J]. Journal of Hydraulic Research, 1991, 29(5):669-684.
    [13] Silva-Araya W F, Chaudhry M H. Computation of energy dissipation in transient flow[J]. Journal of Hydraulic Engineering, 1997, 123(2):108-115.
    [14] Pezzinga G. Quasi-2D model for unsteady flow in pipe networks[J]. Journal of Hydraulic Engineering, 1999, 125(7):676-685.
    [15] Pezzinga G, Cannizzaro D. Analysis of Transient Vaporous in pipes by a distributed 2D model[J]. 2014, 140(6):04014019-1-04014019-10.
    [16] Tazraei P, Riasi A. Quasi-two-dimensional numerical analysis of fast transient flows considering non-Newtonian effects[J]. Journal of Fluids Engineering, 2016, 138(1):011203-1-011203-8.
    [17] Jang T U, Wu Y B, Xu Y, et al. Efficient quasi-two-dimensional water hammer model on a characteristic grid[J]. Journal of Hydraulic Engineering, 2016, 142(12):06016019-1-06016019-6.
    [18] Zhao M. Numerical solutions of quasi-two-dimensional models for laminar water hammer problems[J]. Journal of Hydraulic Research, 2016, 54(3):360-368.
    [19] Zhao M, Ghidaoui M S. Efficient quasi-two-dimensional model for water hammer problems[J]. Journal of Hydraulic Engineering, 2003, 129(12):1007-1013.
    [20] Korbar R, Virag Z, Šavar M. Truncated method of characteristics for quasi-two-dimensional water hammer model[J]. Journal of Hydraulic Engineering, 2014, 140(6):04014013-1-04014013-7.
    [21] Korbar R, Virag Z, Šavar M. Efficient solution method for quasi two-dimensional model of water hammer[J]. Journal of Hydraulic Research, 2014, 52(4):575-579.
    [22] 陈明, 伍建林, 王建华. 气液固三相管流耦合水击振动特性的参数影响分析[J]. 工程力学, 2015, 32(2):233-240. Chen Ming, Wu Jianlin, Wang Jianhua. Analysis of parametric influence of a coupled water hammer on the vibration characteristics of gas-liquid-solid three-phase flow in pipelines[J]. Engineering Mechanics, 2015, 32(2):233-240. (in Chinese)
    [23] Geng Y F, Wang Z L, Jin S. FVS scheme for severe transient flow in pipe networks[J]. Journal of Hydrodynamics, Series B, 2005, 17(5):621-628.
    [24] Sun Q, Wu Y B, Xu Y, et al. Flux vector splitting schemes for water hammer flows in pumping supply systems with air vessels[J]. Journal of Harbin Institute of Technology (New Series), 2015, 22(3):69-74.
    [25] Anderson J D. Computational fluid dynamics:the basics with applications[M]. New York:McGraw-Hill, 1995, 534-538.
    [26] Toro E F. Riemann solvers and numerical methods for fluid dynamics[M]. 3rd ed. Berlin:Springer-Verlag, 2009:265-282.
  • 期刊类型引用(11)

    1. 康厚军,钱登宇,苏潇阳,张晓宇,丛云跃. 刚构体系斜拉桥塔柱计算长度系数求解方法研究. 工程力学. 2025(01): 44-52 . 本站查看
    2. 张晓笛,段冰,吴健,王金昌,杨仲轩,龚晓南,徐荣桥. 混凝土芯水泥土复合桩竖向承载特性分析方法. 岩土力学. 2024(01): 173-183 . 百度学术
    3. 江杰,柴文成,张探,龙逸航. 基于T-P模型的桩-桩水平振动相互作用研究. 工程力学. 2023(01): 87-99 . 本站查看
    4. 张晓笛,王金昌,杨仲轩,龚晓南,徐荣桥. 基于状态空间法的阶梯型变截面水平受荷桩分析方法. 岩土工程学报. 2023(09): 1944-1952 . 百度学术
    5. 黄申,翟恩地,许成顺,孙毅龙. 考虑附加抗力影响的单桩水平受力分析方法. 工程力学. 2022(06): 156-168 . 本站查看
    6. 尹平保,王翱,赵衡,杨铠波,赵明华. 斜坡段桥梁基桩受力与变形分析的传递矩阵法. 湖南大学学报(自然科学版). 2022(11): 216-224 . 百度学术
    7. 王洋,龚维明,竺明星,戴国亮,万志辉. 砂土中水平循环荷载下单桩式海上风电体系自振频率偏移规律. 中南大学学报(自然科学版). 2022(11): 4372-4380 . 百度学术
    8. 张小玲,赵景玖,孙毅龙,许成顺. 基于圆孔扩张理论的桩基水平承载力计算方法. 工程力学. 2021(02): 232-241+256 . 本站查看
    9. 王董平,赵成光. 较大水平荷载桩基在储煤棚设计中的应用. 煤炭工程. 2021(01): 33-37 . 百度学术
    10. 付臣志,江杰,欧孝夺,龙逸航,张探. 砂土地基中刚性单桩水平极限承载力改进计算方法. 中南大学学报(自然科学版). 2021(10): 3668-3679 . 百度学术
    11. 邢康宇,吴文兵,张凯顺,刘浩. 基于改进应变楔模型的大直径桩基水平承载力分析方法. 安全与环境工程. 2020(03): 200-207 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  427
  • HTML全文浏览量:  32
  • PDF下载量:  100
  • 被引次数: 16
出版历程
  • 收稿日期:  2016-03-31
  • 修回日期:  2016-09-28
  • 刊出日期:  2017-09-24

目录

    /

    返回文章
    返回