基于Kirchhoff板中裂纹尖端辛本征解的有限元应力恢复方法

王珊

王珊. 基于Kirchhoff板中裂纹尖端辛本征解的有限元应力恢复方法[J]. 工程力学, 2018, 35(5): 10-16. DOI: 10.6052/j.issn.1000-4750.2017.01.0082
引用本文: 王珊. 基于Kirchhoff板中裂纹尖端辛本征解的有限元应力恢复方法[J]. 工程力学, 2018, 35(5): 10-16. DOI: 10.6052/j.issn.1000-4750.2017.01.0082
WANG Shan. A STRESS RECOVERY METHOD FOR CRACKS IN KIRCHHOFF PLATE BASED ON THE SYMPLECTIC EIGENSOLUTIONS NEAR THE CRACK TIPS[J]. Engineering Mechanics, 2018, 35(5): 10-16. DOI: 10.6052/j.issn.1000-4750.2017.01.0082
Citation: WANG Shan. A STRESS RECOVERY METHOD FOR CRACKS IN KIRCHHOFF PLATE BASED ON THE SYMPLECTIC EIGENSOLUTIONS NEAR THE CRACK TIPS[J]. Engineering Mechanics, 2018, 35(5): 10-16. DOI: 10.6052/j.issn.1000-4750.2017.01.0082

基于Kirchhoff板中裂纹尖端辛本征解的有限元应力恢复方法

详细信息
    通讯作者:

    王珊(1981-),女,大连市人,高工,博士,主要从事计算固体力学、断裂力学研究(E-mail:wangshan1981@163.com)

  • 中图分类号: O343.4

A STRESS RECOVERY METHOD FOR CRACKS IN KIRCHHOFF PLATE BASED ON THE SYMPLECTIC EIGENSOLUTIONS NEAR THE CRACK TIPS

  • 摘要: 对于含穿透裂纹的板结构,裂纹尖端应力场及应力强度因子的计算精度对评估板的安全性具有非常重要的影响。基于含裂纹Kirchhoff板弯曲问题中裂纹尖端场的辛本征解析解,该文提出了一个提高裂纹尖端应力场计算精度的有限元应力恢复方法。首先利用常规有限元程序对含裂纹板弯曲问题进行分析,得到裂纹尖端附近的单元节点位移;然后根据节点位移确定辛本征解中的待定系数,得到裂纹尖端附近应力场的显式表达式。数值结果表明,该方法给出的应力分析精度得到较大提高,并具有良好的数值稳定性。
    Abstract: For a plate structure with through cracks, the calculation accuracy of the stress field and the stress intensity factor near the crack tips has important influence on the safety evaluation of the plate. Based on the analytical symplectic eigen-solutions of the crack tip field in the Kirchhoff plate bending problem with cracks, a finite element stress recovery method is proposed to improve the calculation accuracy of the stress field near the crack tips. Firstly, the bending problem of the cracked plate is analyzed by using the conventional finite element program, and the nodal displacements near the crack tip are obtained. Secondly, the undetermined coefficients in the symplectic eigen-solutions are determined by using nodal displacements, and the explicit expression of the stress field near the crack tip is obtained. The numerical results show that the present approach can present the stress results with more precision and has good numerical stability.
  • [1] Zienkewicz O C, Taylor R L. The finite element method[M]. 42th ed. N Y:McGraw2Hill, 1989.
    [2] 王勖成. 有限单元法[M]. 北京:清华大学出版社, 2003. Wang Xucheng. Finite element method[M]. Beijing:Tsinghua University Press, 2003. (in Chinese)
    [3] Oden J T, Reddy J N. Note on an approximate method for computing consistent conjugate stresses in elastic finite elements[J]. International Journal for Numerical Methods in Engineering, 1973, 6(1):55-61.
    [4] Hinton E, Campbell J S. Local and global smoothing of discontinuous finite element functions using a least squares methods[J]. International Journal for Numerical Methods in Engineering, 1974, 8(3):461-480.
    [5] Mota A, Abel J F. On mixed finite element formulations and stress recovery techniques[J]. International Journal for Numerical Methods in Engineering, 2015, 47(1-3):191-204.
    [6] Ahmed M, Singh D. Stress recovery based h-adaptive finite element simulation of sheet forming operations[J]. Journal of the Institution of Engineers, 2016, 97(3):451-467.
    [7] 孙雁, 钟万勰. 影响函数与有限元应力计算[J]. 计算力学学报, 2010, 27(1):1-7. Sun Yan, Zhong Wanxie. Influence function and finite element stress calculation[J]. Journal of Computational Mechanics, 2010, 27(1):1-7. (in Chinese)
    [8] Xiao Q Z, Karihaloo B L. Statically admissible stress recovery for crack problems[C]. Turin, Italy:Proceedings of ICF11, March, 2005:20-25.
    [9] Xiao Q Z, Karihaloo B L. Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery[J]. International Journal for Numerical Methods in Engineering, 2006, 66(9):1378-1410.
    [10] 钟万勰. 弹性力学求解新体系[M]. 大连:大连理工大学出版社, 1995. Zhong Wanxie. A new systematic methodology for theory of elasticity[M]. Dalian:Dalian University of Technology Press, 1995. (in Chinese)
    [11] 钟万勰, 徐新生, 张洪武. 弹性曲梁问题的直接法[J]. 工程力学, 1996, 13(4):1-8. Zhong Wanxie, Xu Xinsheng, Zhang Hongwu. On a direct method for the problem of elastic curved beams[J]. Engineering Mechanics, 1996, 13(4):1-8. (in Chinese)
    [12] 马坚伟, 徐新生, 杨慧珠, 等. 基于哈密顿体系求解空间粘性流体问题[J]. 工程力学, 2002, 19(3):1-5. Ma Jianwei, Xu Xinsheng, Yang Huizhu, et al. Solution of spatial viscous flow based on Hamiltonian system[J]. Engineering Mechanics, 2002, 19(3):1-5. (in Chinese)
    [13] 赵岩, 项盼, 张有为, 等. 具有不确定参数车轨耦合系统随机振动灵敏度分析[J]. 工程力学, 2013, 30(4):360-366. Zhao Yan, Xiang Pan, Zhang Youwei, et al. Random vibration sensitivity analysis for coupled vehicle-track systems with parameter uncertainties[J]. Engineering Mechanics, 2013, 30(4):360-366. (in Chinese)
    [14] Yao W A, Zhong W X, Lim C W. Symplectic elasticity[M]. Singapore:World Scientific, 2009.
    [15] 王承强, 郑长良. 平面裂纹应力强度因子的半解析有限元法[J]. 工程力学, 2005, 2(1):33-37. Wang Chengqiang, Zheng Changliang. Semi-analytical finite element method for plane crack stress intensity factor[J]. Engineering Mechanics, 2005, 22(1):33-37. (in Chinese)
    [16] 徐小明, 张盛, 姚伟岸, 等. 基于辛弹性力学解析本征函数的有限元应力磨平方法[J]. 计算力学学报, 2012, 29(4):511-516. Xu Xiaoming, Zhang Sheng, Yao Weian, et al. A stress recovery method based on the analytical eigenfunctions of symplectic elasticity[J]. Chinese Journal of Computational Mechanics, 2012, 29(4):511-516. (in Chinese)
    [17] Jiang C P, Cheung Y K. A special bending crack tip finite element[J]. International Journal of Fracture, 1995, 71:55-69.
    [18] Yao W A, Wang S. An analytical singular element for Kirchhoff plate bending with V-Shaped notches[J]. J. Applied Mechanics, Transactions ASME, 2012, 79(5):051016.
  • 期刊类型引用(4)

    1. 崔辉如,姜强强,沈栋,吕轩,任孝宇. 粘弹性应变能释放率的虚拟网格计算方法. 固体火箭技术. 2023(06): 915-922 . 百度学术
    2. 李戎,杨萌,梁斌. 基于SIF均匀化方法的FGM板及FGM圆筒Ⅰ型裂纹尖端应力研究. 船舶力学. 2022(10): 1524-1535 . 百度学术
    3. 李戎,杨萌,梁斌,NODA Nao-Aki. 基于裂纹尖端应力比值的含裂纹功能梯度材料圆筒应力强度因子计算方法. 工程力学. 2020(04): 22-29 . 本站查看
    4. 刘宁,胡梦凡,周飞. 基于键基近场动力学理论的单裂纹圆孔板冲击破坏研究. 工程力学. 2020(12): 9-17 . 本站查看

    其他类型引用(2)

计量
  • 文章访问数:  294
  • HTML全文浏览量:  42
  • PDF下载量:  37
  • 被引次数: 6
出版历程
  • 收稿日期:  2017-01-19
  • 修回日期:  2017-12-14
  • 刊出日期:  2018-05-24

目录

    Corresponding author: WANG Shan

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回