一种渗流吸水诱发岩体强度弱化的有限体积数值计算方法

郭影, 姜忻良, 曹东波, 白铁钧, 朱广轶, 冯春

郭影, 姜忻良, 曹东波, 白铁钧, 朱广轶, 冯春. 一种渗流吸水诱发岩体强度弱化的有限体积数值计算方法[J]. 工程力学, 2018, 35(7): 139-149. DOI: 10.6052/j.issn.1000-4750.2017.03.0209
引用本文: 郭影, 姜忻良, 曹东波, 白铁钧, 朱广轶, 冯春. 一种渗流吸水诱发岩体强度弱化的有限体积数值计算方法[J]. 工程力学, 2018, 35(7): 139-149. DOI: 10.6052/j.issn.1000-4750.2017.03.0209
GUO Ying, JIANG Xin-liang, CAO Dong-bo, BAI Tie-jun, ZHU Guang-yi, FENG Chun. A FINITE VOLUME NUMERICAL SIMULATION METHOD FOR ROCK MASS STRENGTH WEAKENING BY SEEPAGE WATER ABSORBING[J]. Engineering Mechanics, 2018, 35(7): 139-149. DOI: 10.6052/j.issn.1000-4750.2017.03.0209
Citation: GUO Ying, JIANG Xin-liang, CAO Dong-bo, BAI Tie-jun, ZHU Guang-yi, FENG Chun. A FINITE VOLUME NUMERICAL SIMULATION METHOD FOR ROCK MASS STRENGTH WEAKENING BY SEEPAGE WATER ABSORBING[J]. Engineering Mechanics, 2018, 35(7): 139-149. DOI: 10.6052/j.issn.1000-4750.2017.03.0209

一种渗流吸水诱发岩体强度弱化的有限体积数值计算方法

基金项目: 国家青年科学基金项目(51208356);辽宁省自然科学基金指导计划项目(20170540649,20170540651);国家留学基金项目(201708210323)
详细信息
    作者简介:

    姜忻良(1951-),男,浙江人,教授,博士,博导,主要从事地下工程及结构与土相互作用的研究(E-mail:jiangxinliang@126.com);曹东波(1980-),女,辽宁人,讲师,硕士,主要从事外语教学和数值软件翻译研究(E-mail:2352052703@qq.com);白铁钧(1962-),男,辽宁人,教授,博士,主要从事工程力学方面研究(E-mail:tiejun1009@126.com);朱广轶(1962-),男,辽宁人,教授,硕士,主要从事开采沉陷与治理方面的研究(E-mail:yxj2038@163.com);冯春(1982-),男,浙江人,助理研究员,硕士,主要从事岩土力学领域数值方法的研究(E-mail:fengchun@imech.ac.cn).

    通讯作者:

    郭影(1979-),女,辽宁人,副教授,博士,主要从事地下结构和岩土工程方面的研究(E-mail:guoying0829@163.com).

  • 中图分类号: TU452

A FINITE VOLUME NUMERICAL SIMULATION METHOD FOR ROCK MASS STRENGTH WEAKENING BY SEEPAGE WATER ABSORBING

  • 摘要: 传统的渗流数值计算方法难以较真实地描述岩石材料性能劣化和渗透性演化机制。该文提出了一种渗流吸水诱发岩体强度弱化的有限体积数值计算方法。利用高斯散度定理采用有限体积法求解水在岩体中的渗流过程及岩体的变形破坏过程,建立了基质吸水引起岩体模量及强度弱化的理论模型及相应的数学表述。基于考虑吸水弱化算法的各向同性孔隙渗流模型,模拟了低、高两种边界流体压力下某粉砂岩试样的吸水软化过程和不同吸水时间下试样的单轴压缩过程。数值算例表明:边界流体压力越高,试样达到整体饱和状态的时间越快;渗流初期以自由水渗流填充孔隙为主,渗流后期以孔隙内自由水向基质吸水的转化为主;边界流体压力对渗流速率具有明显控制作用,但对基质吸水速度无影响;随着吸水时间的增加,试样的强度(黏聚力、内摩擦角)逐渐减小至残余值,得到的基质吸水含量随时间变化的数值解与理论解基本一致,表明了数值算法的计算精度,可以用于隧道突水、围岩稳定性等实际岩体工程问题的渗流-应力耦合效应分析。
    Abstract: It is difficult to describe the deterioration mechanism and permeability evolution mechanism of rock materials by the traditional numerical method of seepage flow. A finite volume numerical method is proposed for the weakening strength of rock mass induced by seepage water absorption. The seepage process of water and the deformation and destruction process of rock mass are solved with the finite volume method by using the Gauss divergence theorem, and a theoretical model for modulus and strength of the weakening rock mass induced by the matrix suction is established and the corresponding mathematical expressions are given. Based on the isotropic pore seepage model considering a water weakening algorithm, the softening process of a powder sandstone sample and the uniaxial compression process of specimens with different water absorption time are simulated under both low and high boundary fluid pressures. The numerical examples show that the higher the pressure of boundary fluid, the faster the sample reaches the overall saturation state. In the early stage of seepage, the free water flow fills the pores, while it is dominated by the transformation from the free water in the pore to the matrix suction in the later stage. The boundary fluid pressure has obvious control effect on the flow rate, but has no effect on the water absorption speed of the matrix suction. With the increase of the absorption time, the strength (cohesion and internal friction angle) of the sample is gradually reduced to the residual value, and the matrix water absorption content obtained by using this method is basically consistent with the theoretical solution. This demonstrates the calculation precision of the numerical algorithm and that it can be used to analyze the seepage and stress coupling effect on actual rock mass engineering problems such as tunnel water breakthrough and surrounding rock stability.
  • [1] 佘诗刚, 林鹏. 中国岩石工程若干进展与挑战[J]. 岩石力学与工程学报, 2014, 33(3):433-457. She Shigang, Lin Peng. Some developments challenging issues in rock engineering field in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(3):433-457. (in Chinese)
    [2] She S G, Dong L J. Statistics and analysis of academic publications for development of rock mechanics in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(3):442-464.
    [3] Lin P, Zhou Y, Liu H Y, et al. Reinforcement design and stability analysis for large-span tailgated tunnels with irregular geometry[J]. Tunneling and Underground Space Technology, 2013, 38(9):189-204.
    [4] Dafalias Y F, Manzari M T. Simple plasticity sand model accounting for fabric change effects[J]. Journal of Engineering Mechanics, 2004, 130(6):622-634.
    [5] Li X S, Dafalias Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4):449-460.
    [6] Bathe K J, Khoshgoftaar M R. Finite element free surface seepage analysis without mesh iteration[J]. International Journal for Numerical and Analytic Methods in Geo-mechanics, 1979, 3(1):13-22.
    [7] Zheng H, Liu D F, Lee C F, et al. A new formulation of Signorinip's type for seepage problems with free surfaces[J]. International Journal for Numerical Methods in Engineering, 2005, 64(1):1-16.
    [8] 李腊梅, 冯春. 一种非连续介质中热传导过程的数值模拟方法[J]. 工程力学, 2016, 33(1):25-31. Li Lamei, Feng Chun. A numerical silulation method for heat conduction in discontinuous media[J]. Engineering Mechanics, 2016, 33(1):25-31. (in Chinese)
    [9] Hatzor Y H. Fundamentals of discrete element methods for rock engineering:theory and applications[J]. International Journal of Rock Mechanics & Mining Sciences, 2008, 45(8):1536-1537.
    [10] Burshtein L S. Effect of moisture on the strength and deformability of sandstone[J]. Journal of Mining Science, 1969, 5(5):573-576.
    [11] Dyke C G, Dobereiner L. Evaluating the strength and deform-ability of sandstone[J]. Quarterly Journal of Engineering Geology and Hydro-geology, 1991, 24(1):123-134.
    [12] 赵延林. 裂隙岩体渗流-损伤-断裂锅合的理论研究和工程应用研究[D]. 长沙:中南大学, 2009:43-57. Zhao Yanlin. Coupling the of seepage-damage-fracture in fractured rock masses and its application[D]. Changsha:Central South University, 2009:43-57. (in Chinese)
    [13] 黄宏伟, 车平. 泥岩遇水软化微观机理研究[J]. 同济大学学报(自然科学版), 2007, 35(7):866-870. Huang Hongwei, Che Ping. Research on micromechanism of softening and argillitization of mudstone[J]. Journal of Tongji University (Natural Science), 2007, 35(7):866-870. (in Chinese)
    [14] 张永安, 李峰, 陈军. 红层泥岩水岩作用特征研究[J]. 工程地质学报, 2008, 16(1):22-26. Zhang Yongan, Li Feng, Chen Jun. Analysis of the interaction between mudstone and water[J]. Journal of Engineering Geology, 2008, 16(1):22-26. (in Chinese)
    [15] 陈栋. 温湿环境下深井软岩强度软化试验研究[D]. 哈尔滨:黑龙江科技大学, 2014:80-95. Chen Dong. Experimental study on strength softening of soft rock in deep mine under temperature humidity environment[D]. Harbin:Heilongjiang University of Science and Technology, 2014:80-95. (in Chinese)
    [16] 周莉, 韩朝龙, 梦祥民, 等. 砂岩单面吸水强度软化实验[J]. 黑龙江科技学院学报, 2012, 22(3):320-324+329+208. Zhou Li, Han Zhaolong, Meng Xiangmin, et al. Softening experiment on single-side absorption strength for sandstone[J]. Journal of Heilongjiang Institute of Science & Technology, 2012, 22(3):320324+329+208. (in Chinese)
    [17] 赵春雷, 赵成刚, 张卫华. 饱和砂土基于相变状态的不排水本构模型[J]. 工程力学, 2015, 32(12):68-76. Zhao Chunlei, Zhao Chenggang, Zhang Weihua. An undrained constitutive model of saturated sands based on the phase transformation[J]. Engineering Mechanics, 2015, 32(12):68-76. (in Chinese)
    [18] 李铮, 何川, 丁建军, 等. 矿山法城市隧道运营期排水量与水压力关系的一种预判方法[J]. 工程力学, 2017, 34(1):14-21. Li Zheng, He Chuan, Ding Jianjun, et al. A method to predict the relationship between water discharge and pressure during operational period of city tunnels constructed using the mining method[J]. Engineering Mechanics, 2017, 34(1):14-21. (in Chinese)
    [19] 郝耐, 张秀莲, 王淑鹏, 等. 敦煌石窟砂岩吸水特性及力学效应试验研究[J]. 科学技术与工程, 2017, 17(12):21-26. Hao Nai, Zhang Xiulian, Wang Shupeng, et al. Experimental study on water absorption characteristic and mechanical effect of sandstone in Mogao Grottoes, Dunhuang, China[J]. Science Technology and Engineering, 2017, 17(12):21-26. (in Chinese)
    [20] Itasca Consulting Group Inc. Fast Lagrangian Analysis of Continua in 3 Dimensions, Version 3.0, Users Manual[R]. Minneapolis, Minnesota:Itasca Consulting Group Inc, 2005.
    [21] 陆晶晶, 李承亮. 基于CDEM的高桩码头在地震作用下破坏模式数值模拟研究[C]//第十五届中国海洋工程学术讨论会论文集, 2011. Lu Jingjing, Li Chengliang. Numerical Simulation Research on CDEM high pile wharf damage in the earthquake mode[C]//The 15th China Ocean Engineering Symposium Proceedings, 2011. (in Chinese)
    [22] 冯春, 李世海, 刘晓宇. 基于颗粒离散元法的连接键应变软化模型及其应用[J]. 力学学报, 2016, 48(1):76-85. Feng Chun, Li Shihai, Liu Xiaoyu. Particle-Dem based linked bar strain softening model and its application[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1):76-85. (in Chinese)
    [23] 冯春, 李世海, 王理想. 一种基于单元局部坐标系求解二维孔隙渗流问题的数值方法[J]. 岩土力学, 2014, 35(2):584-590. Feng Chun, Li Shihai, Wang Lixiang. A numerical method to solve pore seepage problems based on element local coordinate system[J]. Rock and Soil Mechanics, 2014, 35(2):584-590. (in Chinese)
    [24] 李勇. 岩质边坡动力放大系数及近似计算方法的研究[D]. 成都:西南交通大学, 2013:36-47. Ling Yong. The study of the dynamic magnification factor of the rock slope and approximate calculation method[D]. Chengdu:Southwest Jiaotong University, 2013:36-47. (in Chinese)
    [25] Feng C, Li S H, Liu X Y, et al. A semi-spring and semi-edge combined contact model in CDEM and its application to analysis of Jiweishan landslide[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(1):26-35.
  • 期刊类型引用(3)

    1. 李婧,张伟俊,李赟鹏,冯春,张一鸣. 浅埋煤层开采诱发地下水渗流过程. 山东大学学报(工学版). 2023(03): 78-87 . 百度学术
    2. 张明亮,宿晓辉,吴正桥,张建涛,李浩瑾. 代古寺面板堆石坝渗流场有限体积法数值分析. 水利水运工程学报. 2023(06): 205-212 . 百度学术
    3. 杨廷毅,白雪. 摄动法研究硬盘磁头滑块动态飞行特性. 工程力学. 2018(11): 223-231 . 本站查看

    其他类型引用(5)

计量
  • 文章访问数:  466
  • HTML全文浏览量:  60
  • PDF下载量:  74
  • 被引次数: 8
出版历程
  • 收稿日期:  2017-03-16
  • 修回日期:  2017-10-23
  • 刊出日期:  2018-07-24

目录

    /

    返回文章
    返回