考虑热应力、热变形正交各向异性板的动特性及响应规律

胡君逸, 李跃明, 李海波, 程昊

胡君逸, 李跃明, 李海波, 程昊. 考虑热应力、热变形正交各向异性板的动特性及响应规律[J]. 工程力学, 2018, 35(8): 218-229. DOI: 10.6052/j.issn.1000-4750.2017.03.0258
引用本文: 胡君逸, 李跃明, 李海波, 程昊. 考虑热应力、热变形正交各向异性板的动特性及响应规律[J]. 工程力学, 2018, 35(8): 218-229. DOI: 10.6052/j.issn.1000-4750.2017.03.0258
HU Jun-yi, LI Yue-ming, LI Hai-bo, CHENG Hao. RESEARCHES ON VIBRATION CHARACTERISTIC AND DYNAMIC RESPONSE OF ORTHOTROPIC PLATE WITH THERMAL STRESS AND DEFORMATION[J]. Engineering Mechanics, 2018, 35(8): 218-229. DOI: 10.6052/j.issn.1000-4750.2017.03.0258
Citation: HU Jun-yi, LI Yue-ming, LI Hai-bo, CHENG Hao. RESEARCHES ON VIBRATION CHARACTERISTIC AND DYNAMIC RESPONSE OF ORTHOTROPIC PLATE WITH THERMAL STRESS AND DEFORMATION[J]. Engineering Mechanics, 2018, 35(8): 218-229. DOI: 10.6052/j.issn.1000-4750.2017.03.0258

考虑热应力、热变形正交各向异性板的动特性及响应规律

基金项目: 国家自然科学基金项目(11321062)
详细信息
    作者简介:

    胡君逸(1991-),男,湖北人,硕士,主要从事结构的热声振多场数值模拟与实验研究(E-mail:1014109224@qq.com);李海波(1975-),男,湖北人,博士,主要从事飞行器结构动力学与可靠性技术研究(E-mail:haibo_lihb@aliyun.com);程昊(1983-),男,河北人,博士,主要从事飞行器结构动力学与力热复合试验技术研究(E-mail:chenghao613@126.com).

    通讯作者:

    李跃明(1961-),男,江苏人,教授,博士,主要从事多场结构动力学研究(E-mail:liyueming@mail.xjtu.edu.cn).

  • 中图分类号: O327

RESEARCHES ON VIBRATION CHARACTERISTIC AND DYNAMIC RESPONSE OF ORTHOTROPIC PLATE WITH THERMAL STRESS AND DEFORMATION

  • 摘要: 该文开展了热环境下正交各向异性板固有特性和激励响应的研究,通过实验测试与数值计算,分析了其固有频率随温度的变化规律、模态交换或突跳现象、以及激励作用下响应受温度的影响。结果表明:温度引起的热应力与热变形会改变板的动态特性,但两者在热屈曲前后对板刚度的影响机制不同,导致固有频率随温度先降低后上升,且它们的微小变化会导致正交各向异性板的模态交换或突跳现象;激励作用下整体响应曲线随温度升高向低频漂移。
    Abstract: This paper focuses on the study of the natural vibration characteristics and dynamic response of an orthotropic plate under thermal environment by means of experiment and numerical calculation. The variation of natural frequency as well as the interchange of the mode shape and response under excitation during thermal environment are the key points in this research. The result shows that the thermal stresses and thermal deformation due to thermal loading will change the dynamic characteristics of an orthotropic plate. The thermal stresses and thermal deformation are of different effects on the stiffness of the plate, will result in a trend that the fundamental frequency firstly lowers and then rises, and whose slight variation leads to a mode-shape interchange of the plate. The dynamic response curve shifts to the low frequency range with temperature rising.
  • [1] Matsunaga H. Vibration and stability of angle-ply laminated composite plates subjected to in-plane stresses[J]. International Journal of Mechanical Sciences, 2001(43):1925-1944.
    [2] Singha M K. Nonlinear vibration of symmetrically laminated composite skew plates by finite element method[J]. International Journal of Non-linear Mechanics, 2007, 42(9):1144-1152.
    [3] Daneshjoo K. Classical coupled thermoelasticity in laminated composite plates based on third-order shear deformation theory[J]. Composite Structures, 2004, 64:369-375.
    [4] Pradeep V, Ganesan N. Thermal buckling and vibration behavior of multi-layer rectangular viscoelastic sandwich plates[J]. Journal of Sound & Vibration, 2008, 310(1-2):169-183.
    [5] Jae-Sang Park, Ji-Hwan Kim, Seong-Hwan Moon. Vibration of thermally post-buckled composite plates embedded with shape memory alloy fibers[J]. Composite Structures, 2004,(63):179-188
    [6] Anderson T J, Nayfeh A H. Natural frequencies and mode shapes of laminated composite plates:experiments and FEA[J]. Journal of Vibration & Control, 1996, 2(2):381-414.
    [7] Ribeiro P. Non-linear vibrations of laminated cylindrical shallow shells under thermomechanical loading[J]. Journal of Sound and Vibration, 2008, 315:626-640.
    [8] Cheng H, Li H B, Zhang W, et al. Effects of radiation heating on modal characteristics of panel structures[J]. Journal of Spacecraft and Rockets, 2015, 52(4):1228-1235.
    [9] Du M, Geng Q, Li Y M. Vibrational and acoustic responses of a laminated plate with temperature gradient along the thickness[J]. Composite Structures, 2016, 157:483-493.
    [10] Jeyaraj P, Padmanabhan C, Ganesan N. Vibration and acoustic response of an isotropic plate in a thermal environment[J]. ASME Transaction Journal of Vibration and Acoustics, 2008, 130(5):301-305.
    [11] Jeyaraj P, Ganesan N, Padmanabhan C. Vibration and acoustic response of a composite plate with inherent material damping in a thermal environment[J]. Journal of Sound and Vibration, 2009, 320(1-2):322-338.
    [12] Kim Y W. Temperature dependent vibration analysis of functionally graded rectangular plates[J]. Journal of Sound and Vibration, 2005, 284(3-5):531-549.
    [13] Liu C F, Huang C H. Free vibration of composite laminated plates subjected to temperature changes[J]. Computers and Structures, 1996, 60(1):95-101.
    [14] 李世荣, 郁汶山. 弹性地基上加热弹性圆板的热过屈曲及临界屈曲模态跃迁[J]. 工程力学, 2007, 24(5):63-66. Li Shirong, Yu Wenshan. Thermal post-buckling and the critical buckling mode transition of heated elastic circular plates on elastic foundation[J]. Engineering Mechanics, 2007, 24(5):63-66. (in Chinese)
    [15] 钮鹏, 李旭, 李世荣, 等. 弹性地基上复合材料夹层梁的热过屈曲[J]. 工程力学, 2017, 34(增刊1):26-30. Niu Peng, Li Xu, Li Shirong, et al. The thermal buckling of composite sandwich beams on elastic foundations[J]. Engineering Mechanics, 2017, 34(Suppl 1):26-30. (in Chinese)
    [16] 杨雄伟, 李跃明, 闫桂荣. 考虑材料物性热效应飞行器声振耦合动态特性分析[J]. 固体力学学报, 2010, 31(增刊):134-142. Yang Xiongwei, Li Yueming, Yan Guirong. Vibroacoustic dynamic analyze of aircraft with temperaturedependent material property[J]. Chinese Journal of Solid Mechanics, 2010, 31(Supll):134-142. (in Chinese)
    [17] 耿谦, 李跃明, 杨雄伟. 热应力作用下结构声-振耦合响应数值分析[J]. 计算力学学报, 2012, 29(1):99-104. Geng Qian, Li Yueming, Yang Xiongwei. Vibro-acoustic numerical analysis of thermal stressed aircraft structure[J]. Chinese Journal of Computational Mechanics 2012, 29(1):99-104. (in Chinese)
    [18] Geng Q, Li H, Li Y M. Dynamic and acoustic response of a clamped rectangular plate in thermal environments:Experiment and numerical simulation[J]. Journal of the Acoustical Society of America, 2014, 135(5):2674-2682.
    [19] Geng Q, Li Y M. Analysis of dynamic and acoustic radiation characters for a flat plate under thermal environments[J]. International Journal of Applied Mechanics, 2012, 4(3):1250028.
    [20] Geng Q, Li Y M. Solutions of dynamic and acoustic responses of a clamped rectangular plate in thermal environments[J]. Journal of Vibration and Control, 2016, 22(6):1593-1603.
    [21] Li W, Li Y M. Vibration and sound radiation of an asymmetric laminated plate in thermal environments[J]. Acta Mechanica Solida Sinica, 2015, 28(1):11-22.
    [22] Liu Y, Li Y M. Vibration and acoustic response of rectangular sandwich plate under thermal Environment[J]. Shock and Vibration, 2013, 20(5):1011-1030.
    [23] 李欢, 耿谦, 李跃明. 热环境下夹芯梁声振特性的理论与数值研究[J]. 应用力学学报, 2015, 32(1):40-45. Li Huan, Geng Qian, Li Yueming. Theoretical and numerical study on the thermal environment characteristics of Shengzhen sandwich beam[J]. Chinese Journal of Applied Mechanics, 2015, 32(1):40-45. (in Chinese)
    [24] Zhao X, Geng Q, Li Y M. Vibration and acoustic response of an orthotropic composite laminated plate in a hygroscopic environment[J]. Journal of the Acoustical Society of America, 2013, 133(3):1433-1442.
    [25] Xin Zhao, Yueming Li. Vibration and acoustic responses of an orthotropic composite conical shell in a hygroscopic environment[J]. Journal of Vibration & Control, 2015, 7(4):190-217.
    [26] 吴振强, 程昊, 张伟, 等. 热环境对飞行器壁板结构动特性的影响[J]. 航空学报, 2013, 34(2):334-342. Wu Zhenqiang, Cheng Hao, Zhang Wei, et al. Effects of thermal environment on dynamic properties of aerospace vehicle panel structures[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):334-342. (in Chinese)
    [27] 王勖成. 有限单元法[M]. 北京:清华大学出版社, 2003. Wang Xucheng. Finite element method[M]. Beijing:Tsinghua University Press, 2003. (in Chinese)
    [28] 陈塑寰. 结构动态设计的矩阵摄动理论[M]. 北京:科学出版社, 1999. Chen Suhuan. Matrix perturbation theory for structural dynamic design[M]. Beijing:Science Press, 1999. (in Chinese)
    [29] 于岩磊, 高维成, 刘伟, 等. 密集模态结构模态跃迁分析的简化摄动法[J]. 工程力学, 2012(3):33-40. Yu Yanlei, Gao Weichen, Liu Wei, et al. A simplified perturbation method for modal transition analysis of dense mode Structures[J]. Engineering Mechanics, 2012(3):33-40. (in Chinese)
    [30] Allemeng R J. The modal assurance criterion-twenty years of use and abuse[J]. Sound and Vibration, 2003, 37(8):14-21.
  • 期刊类型引用(6)

    1. 李双宝,李芳. 高温环境下发动机叶片-硬涂层阻尼结构动力学建模与分析. 中国民航大学学报. 2024(01): 30-39 . 百度学术
    2. 黄梦婷,仝国军,张东健,蒲伟. 多孔双向功能梯度板瞬态热应力分析. 机械科学与技术. 2024(09): 1631-1639 . 百度学术
    3. 刘知辉,牛军川,贾睿昊. 热梯度环境下梁高频振动的能量流模型. 航空学报. 2022(05): 592-604 . 百度学术
    4. 王永刚,胡宇达,徐浩然. 谐变力作用功能梯度旋转圆板强非线性主共振. 工程力学. 2022(11): 31-41 . 本站查看
    5. 孙梦楠,刘少华,刘京城. 顾及空间各向异性的IDW插值算法. 计算机工程与设计. 2020(04): 983-987 . 百度学术
    6. 张正平. 飞行器薄壁结构热噪声响应及动强度研究. 强度与环境. 2019(01): 1-7 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  449
  • HTML全文浏览量:  39
  • PDF下载量:  66
  • 被引次数: 13
出版历程
  • 收稿日期:  2017-03-29
  • 修回日期:  2018-01-22
  • 刊出日期:  2018-08-28

目录

    /

    返回文章
    返回