DYNAMIC MECHANICAL PROPERTY STUDY OF BREAK RINGS IN FLEXIBLE PROTECTIVE SYSTEM
-
摘要: 减压环是柔性拦截结构中的重要耗能部件,对结构的能量耗散及过载保护有着重要作用。该文分别开展GS-8002型单减压环和减压环组的拟静力拉伸试验、重物下落动力试验和足尺冲击试验。分析不同试验条件下减压环的变形和受力特征。试验表明:动荷载作用下,启动荷载增大,并联减压环组增幅最大;减压环的拉力曲线具有明显的脉冲特性,串联减压环组的脉冲效应更为突出,且靠近整体系统一侧的减压环变形较大,靠近固定端一侧的减压环变形较小,并联减压环组和单减压环的脉冲效应相近。提出考虑动力特性的减压环四折线力学模型,该模型能够较好的反映减压环的工作性能特点。基于该分析模型,给出不同试验工况下GS-8002型减压环性能指标的等代关系,便于实际工程中的设计与应用。Abstract: Break rings are important energy dissipation components in a flexible protective system, which plays a key role in energy dissipation and over-load protection for the system. The single break ring and the break rings groups of GS-8002 are conducted on quasi-static tests, on the dynamic tests based on weights, and on full-scale impact tests. And then the deformation and mechanical characteristics of the break rings in different test conditions are analyzed. It is shown that:under the influence of the dynamic load, the staring force increases, the parallel break rings group had the largest increase. The tensile strength curve of the break rings has obvious pulse characteristics. The series break rings group is more prominent. The deformation of break ring near the side of the whole system is relatively large, and which near the fixed end is small. The pulse characteristics of parallel break rings groups is similar to that of the single. Then a four-line mechanical model of the break ring considering the dynamic characteristics is proposed, which can better reflect the working performance characteristics of break rings. Based on those analysis models, the equivalent relation is developed between the performance indexes of GS-8002 in different test conditions, which is convenient for the design and application in pertinent practical engineering.
-
Keywords:
- flexible protective system /
- break ring /
- test study /
- mechanical model /
- equivalent relation
-
-
[1] Muraishi H, Samizo M, Sugiyama T. Development of a flexible low-energy rockfall protection fence[J]. Quarterly Report of Rtri, 2005, 46(3):161-166. [2] 崔廉明. 被动防护系统中消能件的力学性能研究[D]. 重庆:后勤工程学院, 2014. Cui Lianming. Study on the mechanical properties of the energy dissipator used in the passive protection system[D]. Chongqing:Logistical Engineering University, 2014. (in Chinese) [3] EOTA(2008). Guideline for the European technical approval of falling rock protection kits[S]. Tech. Rep. European Organization for Technical Approvals (ETAG 27) February, Brussels, 2008. [4] TB/T 3089-2004, 铁路沿线斜坡柔性安全防护网[S]. 北京:中国铁道出版社, 2004. TB/T 3089-2004, The flexible safety net for protection of slope along the line[S]. Beijing:China Railway Publish House, 2004. (in Chinese) [5] JT/T 528-2004, 公路边坡柔性防护系统构件[S]. 北京:人民交通出版社, 2004. JT/T 528-2004, Component of flexible system for protecting highway slope[M]. Beijing:China Communications Press, 2004. (in Chinese) [6] Castro-Fresno, Díaz D D C, Nieto J J, et al. Comparative analysis of mechanical tensile tests and the explicit simulation of a brake energy dissipater by FEM[J]. International Journal of Nonlinear Sciences & Numerical Simulation, 2009, 10(8):1059-1085. [7] Gentilini C, Gottardi G, Govoni L, et al. Design of falling rock protection barriers using numerical models[J]. Engineering Structures, 2013, 50(3):96-106. [8] Bertrand D, Trad A, Limam A, et al. Full-scale dynamic analysis of an innovative rockfall fence under impact using the discrete element method:from the local scale to the structure scale[J]. Rock Mechanics and Rock Engineering, 2012, 45(5):885-900. [9] Lambert S, Nicot F. Multi-scale analysis of an innovative flexible rockfall barrier[M]//Rockfall Engineering. John Wiley & Sons, Inc. 2013:303-342. [10] Fulde M, Müller M. Development of a modular brake element for the use in modern rockfall catchment fences[C]. North Conway, United States:64th Highway Geology Symposium, 2013:297-314. [11] Castanon Jano L, Blanco Fernandez E, Castro Fresno D, et al. Energy dissipating devices in falling rock protection barriers[J]. Rock Mechanics & Rock Engineering, 2016:1-17. [12] 赵世春, 余志祥, 赵雷, 等. 被动防护网系统强冲击作用下的传力破坏机制[J]. 工程力学, 2016, 33(10):24-34. Zhao Shichun, Yu Zhixiang, Zhao Lei, et al. Damage mechanism of rockfall barriers under strong impact loading.[J], Engineering Mechanics, 2016, 33(10):24-34. (in Chinese) -
期刊类型引用(9)
1. 艾庆华,王一鸣. 被动柔性防护系统中减压环力学性能研究. 甘肃科学学报. 2024(06): 50-57 . 百度学术
2. 金云涛,余志祥,郭立平,骆丽茹,张丽君,廖林绪. 柔性落石防护系统丝束环形网拉–弯刚度协调模型. 岩石力学与工程学报. 2023(03): 698-707 . 百度学术
3. 赵雷,邹定富,张丽君,齐欣,余志祥. 落石被动柔性防护网冲击力学响应的参数化研究. 振动与冲击. 2023(12): 8-17 . 百度学术
4. 金云涛,余志祥,骆丽茹,郭立平,张丽君,廖林绪. 正交钢丝环链网片顶压力学行为薄膜等效方法. 工程力学. 2021(11): 114-121 . 本站查看
5. 金云涛,余志祥,骆丽茹,张丽君,许浒,齐欣. 引导式柔性网系统防落石冲击耗能机制研究. 振动与冲击. 2021(20): 177-185+192 . 百度学术
6. 骆丽茹,余志祥,金云涛,张丽君,张蓝月,齐欣,赵世春. 高陡边坡引导式落石防护网系统原位冲击试验. 土木工程学报. 2021(11): 119-128 . 百度学术
7. 杨东昌,马永忠. 非致命武器发展现状及趋势. 中国设备工程. 2020(06): 235-238 . 百度学术
8. 郭立平,余志祥,骆丽茹,齐欣,赵世春. 基于力流等效的环形网顶破力学行为解析方法. 工程力学. 2020(05): 129-139 . 本站查看
18. 鲁超宇,陈金宝,王宸,朱锦耀,王月. 负泊松比高坠防护缓冲系统研究与性能分析. 振动.测试与诊断. 2023(01): 74-79+198-199 . 百度学术
其他类型引用(13)
计量
- 文章访问数: 480
- HTML全文浏览量: 61
- PDF下载量: 45
- 被引次数: 22