复杂三维曲梁结构的无闭锁等几何分析算法研究

夏阳, 廖科

夏阳, 廖科. 复杂三维曲梁结构的无闭锁等几何分析算法研究[J]. 工程力学, 2018, 35(11): 17-25. DOI: 10.6052/j.issn.1000-4750.2017.08.0602
引用本文: 夏阳, 廖科. 复杂三维曲梁结构的无闭锁等几何分析算法研究[J]. 工程力学, 2018, 35(11): 17-25. DOI: 10.6052/j.issn.1000-4750.2017.08.0602
XIA Yang, LIAO Ke. LOCKING-FREE ISOGEOMETRIC ANALYSIS OF COMPLEX THREE-DIMENSIONAL BEAM STRUCTURES[J]. Engineering Mechanics, 2018, 35(11): 17-25. DOI: 10.6052/j.issn.1000-4750.2017.08.0602
Citation: XIA Yang, LIAO Ke. LOCKING-FREE ISOGEOMETRIC ANALYSIS OF COMPLEX THREE-DIMENSIONAL BEAM STRUCTURES[J]. Engineering Mechanics, 2018, 35(11): 17-25. DOI: 10.6052/j.issn.1000-4750.2017.08.0602

复杂三维曲梁结构的无闭锁等几何分析算法研究

基金项目: 中国自然科学基金项目(11702056,61572021);中央高校基本科研业务费专项资金项目(DUT17JC32)
详细信息
    作者简介:

    廖科(1993-),男,四川人,硕士生,主要从事等几何分析研究(E-mail:liaokk11@dlut.edu.cn).

    通讯作者:

    夏阳(1987-),男,河南人,讲师,博士,主要从事等几何分析和增材制造工艺力学研究(E-mail:yangxia@dlut.edu.cn).

  • 中图分类号: O241.8;TU323.3

LOCKING-FREE ISOGEOMETRIC ANALYSIS OF COMPLEX THREE-DIMENSIONAL BEAM STRUCTURES

  • 摘要: 梁结构在工程中应用广泛,梁结构的仿真分析是计算力学的一个重要研究内容。该文研究了复杂三维曲梁结构的等几何分析方法,首次应用拟协调有限元中的多套函数技术,使用降阶基函数逼近梁内应变项,解决复杂三维曲梁结构仿真中的闭锁问题。利用全局坐标系列式方法,避免了单元刚度阵组装时的复杂坐标变换过程,提高计算效率。使用多片NURBS (非均匀有理B样条)数据表示复杂三维梁结构,可精确描述曲梁结构的几何形状,与有限元方法等仿真技术相比避免了网格生成过程,减少了几何误差。数值结果表明该文算法可有效解决闭锁问题,适于复杂三维曲梁结构的仿真分析。
    Abstract: The beam structure is widely used in engineering. The numerical simulation of beam structures is an important topic in computational mechanics. In this paper, the locking-free isogeometric analysis of complex three-dimensional beam structures is investigated. The technique of multiple sets of approximation functions originated from quasi-conforming finite element method is first applied to the isogeometric analysis of three-dimensional beam structures to solve the locking problem. Order-reduced approximation functions are applied to simulate the strains of beams. Global formulation of beam strains is applied, and the stiffness matrices of beam elements and patches can be combined without transformation between local and global coordinate systems. The beam structure is described by multi-patch non-uniform rational B-spline functions. The geometry is exactly described, and the geometrical error introduced by finite element mesh can be avoided. The numerical experiments prove that the proposed algorithm can effectively avoid the locking problem in Timoshenko beam formulation, and is suitable for the analysis of complex three-dimensional beam structures.
  • [1] Hughes T J R, Cottrell J A, Bazilevs Y. Isogeometric analysis:CAD, finite elements, NURBS, exact geometry and mesh refinement[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39/40/41):4135-4195.
    [2] Bazilevs Y, Da Veiga LB, Cottrell JA, et al. Isogeometric analysis:approximation, stability and error estimates for h-refined meshes[J]. Mathematical Models & Methods in Applied Sciences, 2006, 16(7):1031-1090.
    [3] 吴紫俊, 黄正东, 左兵权, 等. 等几何分析研究概述[J]. 机械工程学报, 2015(5):114-129. Wu Zijun, Huang Zhengdong, Zuo Bingquan, et al. Perspectives on isogeometric analysis[J]. Journal of Mechanical Engineering, 2015(5):114-129. (in Chinese)
    [4] Zhang G, Alberdi R, Khandelwal K. Analysis of three-dimensional curved beams using isogeometric approach[J]. Engineering Structures, 2016, 117:560-574.
    [5] Luu A T, Kim N I, Lee J. Isogeometric vibration analysis of free-form Timoshenko curved beams[J]. Meccanica, 2015, 50(1):169-187.
    [6] Cottrell J A, Reali A, Bazilevs Y, Hughes T J R. Isogeometric analysis of structural vibrations[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41/42/43):5257-5296.
    [7] Cazzani A, Malagu M, Turco E. Isogeometric analysis:A powerful numerical tool for the elastic analysis of historical masonry arches[J]. Continuum Mechanics and Thermodynamics, 2016, 28(1/2):139-156.
    [8] 王勖成. 有限单元法[M]. 北京:清华大学出版社, 2003:354-364. Wang Xucheng. Finite element method[M]. Beijing:Tsinghua University Press, 2003:354-364. (in Chinese)
    [9] Bouclier R, Elguedj T, Combescure A. Locking free isogeometric formulations of curved thick beams[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 245:144-162.
    [10] Beirao da Veiga L, Lovadina C, Reali A. Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods[J]. Computer Methods In Applied Mechanics And Engineering, 2012, 241/242/243/244:38-51.
    [11] Marino E. Locking-free isogeometric collocation formulation for three-dimensional geometrically exact shear-deformable beams with arbitrary initial curvature[J]. Computer Methods in Applied Mechanics And Engineering, 2017, 324:546-572.
    [12] Greco L, Cuomo M, Contrafatto L, et al. An efficient blended mixed B-spline formulation for removing membrane locking in plane curved Kirchhoff rods[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 324:476-511.
    [13] Adam C, Bouabdallah S, Zarroug M, et al. Improved numerical integration for locking treatment in isogeometric structural elements, Part I:Beams[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 279:1-28.
    [14] 唐立民, 陈万吉, 刘迎曦. 有限元分析中的拟协调元[J]. 大连工学院学报, 1980, 19(2):19-35. Tang Limin, Chen Wanji, Liu Yingxi. Quasi-conforming elements for finite element analysis[J]. Journal of Dalian Institute of Technology, 1980, 19(2):19-35. (in Chinese)
    [15] 张鸿庆, 王鸣. 多套函数有限元逼近与拟协调板元[J]. 应用数学和力学, 1985, 6(1):41-52. Zhang Hongqing, Wang Ming. Finite element approximations with multiple sets of functions and quasi-conforming elements for plate bending problems[J]. Applied Mathematics and Mechanics, 1985, 6(1):41-52. (in Chinese)
    [16] 胡清元, 夏阳, 胡平, 等. 假设位移拟协调平面单元应变离散算法研究[J]. 工程力学, 2016, 33(9):30-39. Hu Qingyuan, Xia Yang, Hu Ping, et al. Research on the strain discretization algorithmin assumed displacement quasi-conforming plane finite element method[J]. Engineering Mechanics, 2016, 33(9):30-39. (in Chinese)
    [17] Piegl L A, Tiller W. The NURBS book[M]. 2nd ed., Germany:Springer Verlag, 1997.
    [18] 过斌, 葛建立, 杨国来, 等. 三维实体结构NURBS等几何分析[J]. 工程力学, 2015, 32(9):42-48. Guo Bin, Ge Jianli, Yang Guolai, et al. Nurbs-based isogeometric analysis of three-dimensional solid structures[J]. Engineering Mechanics, 2015, 32(9):42-48. (in Chinese)
    [19] Hu P, Hu Q, Xia Y. Order reduction method for locking free isogeometric analysis of Timoshenko beams[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 308:1-22.
    [20] 曾森, 陈少峰, 曲婷, 等. 大位移小转角空间曲梁的弹性力学方程[J]. 工程力学, 2010, 27(12):14-20. Zeng Sen, Chen ShaoFeng, Qu Ting, et al. Elasticity equations for spatial curved beams with large displacement and small rotation[J]. Engineering Mechanics, 2010, 27(12):14-20. (in Chinese)
    [21] Hu Q, Xia Y, Zou R, Hu P. A global formulation for complex rod structures in isogeometric analysis[J]. International Journal of Mechanical Sciences, 2016, 115/116:736-745.
    [22] 张勇, 林皋, 胡志强. 等几何分析方法中重控制点问题的研究与应用[J]. 工程力学, 2013, 30(2):1-7. Zhang Yong, Lin Gao, Hu Zhiqiang. Repeated control points issue in isogeometric analysis and its application[J]. Engineering Mechanics, 2013, 30(2):1-7. (in Chinese)
计量
  • 文章访问数:  553
  • HTML全文浏览量:  65
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-14
  • 修回日期:  2018-01-15
  • 刊出日期:  2018-11-28

目录

    /

    返回文章
    返回