非等向固结砂土极小应变刚度的超弹性模型

张帅, 程晓辉, 王天麟

张帅, 程晓辉, 王天麟. 非等向固结砂土极小应变刚度的超弹性模型[J]. 工程力学, 2020, 37(1): 145-151. DOI: 10.6052/j.issn.1000-4750.2019.02.0058
引用本文: 张帅, 程晓辉, 王天麟. 非等向固结砂土极小应变刚度的超弹性模型[J]. 工程力学, 2020, 37(1): 145-151. DOI: 10.6052/j.issn.1000-4750.2019.02.0058
ZHANG Shuai, CHENG Xiao-hui, WANG Tian-lin. VERY-SMALL-STRAIN STIFFNESS OF ANISOTROPICALLY CONSOLIDATED SAND: A HYPERELASTIC MODEL[J]. Engineering Mechanics, 2020, 37(1): 145-151. DOI: 10.6052/j.issn.1000-4750.2019.02.0058
Citation: ZHANG Shuai, CHENG Xiao-hui, WANG Tian-lin. VERY-SMALL-STRAIN STIFFNESS OF ANISOTROPICALLY CONSOLIDATED SAND: A HYPERELASTIC MODEL[J]. Engineering Mechanics, 2020, 37(1): 145-151. DOI: 10.6052/j.issn.1000-4750.2019.02.0058

非等向固结砂土极小应变刚度的超弹性模型

基金项目: 国家自然科学基金项目(51778338)
详细信息
    作者简介:

    程晓辉(1971-),男,江苏人,副教授,博士,博导,主要从事岩土力学及地下结构研究(E-mail:chengxh@tsinghua.edu.cn);王天麟(1996-),男,湖北人,硕士生,主要从事岩土力学及地下结构研究(E-mail:wangtl18@mails.tsinghua.edu.cn).

    通讯作者:

    张帅(1990-),男,河南人,博士生,主要从事岩土力学及地下结构研究(E-mail:zhsh09@outlook.com).

  • 中图分类号: TU441.4

VERY-SMALL-STRAIN STIFFNESS OF ANISOTROPICALLY CONSOLIDATED SAND: A HYPERELASTIC MODEL

  • 摘要: 反映砂土极小应变刚度的Hardin-Richart公式主要是基于等向固结的实验数据,但是天然土体基本都是处于非等向固结状态。实验研究表明,随着非等向程度的加深,Hardin-Richart公式对土体刚度的估算偏差越大,误差最大可超过20%。3种类型的超弹性模型能够反映土体极小应变刚度随应力水平增大而增大的幂律关系,但仅有HE1模型具有弹性剪胀等特殊的正剪耦合特性,对土体非等向固结状态下的刚度规律趋势预测正确。HE1模型对土体非等向固结状态下的刚度规律预测结果受到其参数取值的影响,但总体而言与实验结果总结的规律一致。
    Abstract: The Hardin-Richart formula used to characterize the very-small-strain stiffness of sands, is mainly based on the experimental data under the isotropic consolidation stress state. The natural soils are anisotropically consolidated. The previous experimental studies have shown that the error of the Hardin-Richart formula will magnify up to 20% as the anisotropic consolidation stress ratio increases. All three different hyperelastic models developed in the soil mechanics literature can reflect the power-law relationship of very-small-strain soil stiffness with respect to the increased mean stress level. But only the HE1 model, accounting for the normal-shear coupling effect including elastic shear dilatation, is capable of modelling the effects of anisotropic consolidation stress ratio on the very-small-strain stiffness. The prediction results of the HE1 model are affected by the values of the model parameters, but generally consistent with the experimental results.
  • [1] Clayton C R I. Stiffness at small strain:research and practice[J]. Géotechnique, 2011, 61(1):5-37.
    [2] 温科伟, 刘树亚, 杨红坡. 基于小应变硬化土模型的基坑开挖对下穿地铁隧道影响的三维数值模拟分析[J]. 工程力学, 2018, 35(增刊):80-87. Wen Kewei, Liu Shuya, Yang Hongpo. Threedimensional numerical simulation analysis of theinfluence of pit excavation based on Hardening soil-smallstrain model for metro tunnel[J]. Engineering Mechanics, 2018, 35(Suppl):80-87. (in Chinese)
    [3] 张凌凯, 王睿, 张建民, 等. 不同应力路径下堆石料的动力变形特性试验研究[J]. 工程力学, 2019, 36(3):114-120. Zhang Lingkai, Wang Rui, Zhang Jianmin, et al. Experimental study on dynamic deformation characteristics of rockfill materials under differentstress paths[J]. Engineering Mechanics, 2019, 36(3):114-120. (in Chinese)
    [4] Towhata I. Seismic Wave Propagation in Elastic Soil with Continuous Variation of Shear Modulus in the Vertical Direction[J]. Journal of the Japanese Geotechnical Society Soils & Foundation, 1996, 36(1):61-72.
    [5] 李志远, 李建波, 林皋, 等. 饱和层状地基条形基础动刚度的精细积分算法[J]. 工程力学, 2018, 35(6):15-23. Li Zhiyuan, Li Jianbo, Lin Gao, et al. Precise integration method for dynamic stiffness of strip foundation on saturatedsoil[J]. Engineering Mechanics, 2018, 35(6):15-23. (in Chinese)
    [6] 刘晶波, 王东洋, 谭辉, 等. 隧道纵向地震反应分析的整体式反应位移法[J]. 工程力学, 2018, 35(10):17-26. Liu Jingbo, Wang Dongyang, Tan Hui, et al.Integral response displacement method for longitudinalseismic response analysis of tunnel structure[J]. Engineering Mechanics, 2018, 35(10):17-26. (in Chinese)
    [7] 张大峰, 杨军, 李连友, 等. 考虑膨胀土地基膨胀率和刚度沿深度变化的桩-土共同作用解析解[J]. 工程力学, 2016, 33(12):86-93. Zhang Dafeng, Yang Jun, Li Lianyou, et al. Analytical solution of pile-soil interaction in expansive soil foundation with expansion rate and stiffness variation along the pile[J]. EngineeringMechanics, 2016, 33(12):86-93. (in Chinese)
    [8] 顾晓强, 杨峻, 黄茂松, 等. 砂土剪切模量测定的弯曲元、共振柱和循环扭剪试验[J]. 岩土工程学报, 2016, 38(4):740-746. Gu Xiaoqiang, Yang Jun, Huang Maosong, et al. Combining bender element, resonant column and cyclic torsional shear tests to determine small strain shear modulus of sand[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4):740-746. (in Chinese)
    [9] 杨同帅, 叶冠林, 顾琳琳. 上海软土小应变三轴试验及本构模拟[J]. 岩土工程学报, 2018, 40(10):1930-1935. Yang Tongshuai, Ye Guanlin, Gu Linlin. Small-strain triaxial tests and constitutive modeling of Shanghai soft clays[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10):1930-1935. (in Chinese)
    [10] Kong G, Li H, Yang G, et al. Investigation on shear modulus and damping ratio of transparent soils with different pore fluids[J]. Granular Matter. 2018, 20(1):1-8.
    [11] Hardin B O, Richart F E. Elastic wave velocities in granular soils[J]. Journal of the Soil Mechanics & Foundations Division, 1963, 89(2):33-66.
    [12] Oztoprak S, Bolton M D. Stiffness of sands through a laboratory test database[J]. Géotechnique, 2013, 63(1):54-70.
    [13] 王海波, 徐明, 宋二祥. 考虑土体小应变特性的一种实用本构模型[J]. 工程力学, 2011, 28(6):60-65. Wang Hai-bo, Xu Ming, Song Erxiang. A practical constitutive model of soil considering thebehavior at small strains[J]. Engineering Mechanics, 2011, 28(6):60-65. (in Chinese)
    [14] 郭晓霞, 迟世春, 林皋. 邓肯E-B模型弹性部分能量守恒的探讨[J]. 岩石力学与工程学报, 2007, 26(增刊1):3114-3121. Guo Xiaoxia, Chi Shichun, Lin Gao. Discussion on energy conservation for elastic component of Duncan-Chang E-B model[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(Suppl1):3114-3121. (in Chinese)
    [15] 李雪冰, 危银涛. 一种改进的Yeoh超弹性材料本构模型[J]. 工程力学, 2016, 33(12):38-43. Li Xuebing, Wei Yintao. An improved Yeoh constitutive model for hyperelastic material[J]. Engineering Mechanics, 2016, 33(12):38-43. (in Chinese)
    [16] Houlsby G T, Amorosi A, Rojas E. Elastic moduli of soils dependent on pressure:a hyperelastic formulation[J]. Géotechnique, 2005, 55(5):383-392.
    [17] 陈志辉, 程晓辉. 饱和黏土不排水抗剪强度各向异性的热力学本构模型研究[J]. 岩土工程学报, 2014, 36(5):836-846. Chen Zhihui, Cheng Xiaohui. Thermodynamic constitutive model for anisotropic undrained shear strength of saturated clays[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5):836-846. (in Chinese)
    [18] 程晓辉, 陈志辉. 纯主应力旋转条件下饱和黏土累积变形的热力学模型分析[J]. 岩土工程学报, 2015, 37(9):1581-1590. Cheng Xiaohui, Chen Zhihui. Thermodynamic modeling of accumulated deformation of saturated clays under pure principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9):1581-1590. (in Chinese)
    [19] Roesler S K. Anisotropic shear modulus due to stress anisotropy[J]. Journal of the Geotechnical Engineering Division, 1979, 105(7):871-880.
    [20] Yu P, Richart F E. Stress ratio effects on shear modulus of dry sands[J]. Journal of Geotechnical Engineering, 1984, 110(3):331-345.
    [21] Kuribayashi E, Iwasaki T, Tatsuoka F. Effects of stress-strain conditions on dynamic properties of sands[J]. Proceedings of the Japan Society of Civil Engineers, 1975(242):105-114.
    [22] Tatsuoka F, Iwasaki T, Fukushima S, et al. Stress conditions and stress histories affecting shear modulus and damping of sand under cyclic loading[J]. Soils and Foundations, 1979, 19(2):29-43.
    [23] Bellotti R, Jamiolkowski M, Presti D C F L, et al. Anisotropy of small strain stiffness in Ticino sand[J]. Géotechnique, 1996, 46(1):115-131.
    [24] Gu X, Yang J, Huang M. DEM simulations of the small strain stiffness of granular soils:effect of stress ratio[J]. Granular Matter, 2013, 15(3):287-298.
    [25] Hoque E, Tatsuoka F. Effects of stress ratio on small-strain stiffness during triaxial shearing[J]. Géotechnique, 2004, 54(7):429-439.
    [26] Ueno K, Kuroda S, Hori T, et al. Elastic shear modulus variations during undrained cyclic loading and subsequent reconsolidation of saturated sandy soil[J]. Soil Dynamics and Earthquake Engineering, 2019, 2019(116):476-489.
    [27] Payan M, Khoshghalb A, Senetakis K, et al. Small-strain stiffness of sand subjected to stress anisotropy[J]. Soil Dynamics and Earthquake Engineering, 2016, 2016(88):143-151.
    [28] 袁晓铭, 孙静. 非等向固结下砂土最大动剪切模量增长模式及Hardin公式修正[J]. 岩土工程学报, 2005, 27(3):264-269. Yuan Xiaoming, Sun Jing. Model of maximum dynamic shear modulus of sand under anisotropic consolidation and revision of Hardin's formula[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(3):264-269. (in Chinese)
    [29] Jafarian Y, Javdanian H, Haddad A. Dynamic properties of calcareous and siliceous sands under isotropic and anisotropic stress conditions[J]. Soils and Foundations. 2018, 58(1):172-184.
  • 期刊类型引用(3)

    1. 路啸. 施工爆破作用下混凝土初支喷层动力响应数值模拟分析. 微型电脑应用. 2024(03): 180-183 . 百度学术
    2. 赵洲,郑思苗,坚亚博. 基于田口方法的砂土抗剪强度特征分析. 干旱区资源与环境. 2022(01): 103-110 . 百度学术
    3. 董晨,王贵荣,段钊,朱艳艳. 松散颗粒材料剪切BoxLucas1应力传递修正模型. 工业建筑. 2021(06): 138-142 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  594
  • HTML全文浏览量:  77
  • PDF下载量:  67
  • 被引次数: 7
出版历程
  • 收稿日期:  2019-02-24
  • 修回日期:  2019-05-14
  • 刊出日期:  2020-01-24

目录

    /

    返回文章
    返回