钢管活性粉末混凝土界面粘结强度计算方法研究

王秋维, 刘乐, 史庆轩, 王朋

王秋维, 刘乐, 史庆轩, 王朋. 钢管活性粉末混凝土界面粘结强度计算方法研究[J]. 工程力学, 2020, 37(4): 41-50. DOI: 10.6052/j.issn.1000-4750.2019.04.0236
引用本文: 王秋维, 刘乐, 史庆轩, 王朋. 钢管活性粉末混凝土界面粘结强度计算方法研究[J]. 工程力学, 2020, 37(4): 41-50. DOI: 10.6052/j.issn.1000-4750.2019.04.0236
WANG Qiu-wei, LIU Le, SHI Qing-xuan, WANG Peng. A CALCULATION METHOD OF THE INTERFACE BOND STRENGTH OF REACTIVE POWDER CONCRETE FILLED IN STEEL TUBES[J]. Engineering Mechanics, 2020, 37(4): 41-50. DOI: 10.6052/j.issn.1000-4750.2019.04.0236
Citation: WANG Qiu-wei, LIU Le, SHI Qing-xuan, WANG Peng. A CALCULATION METHOD OF THE INTERFACE BOND STRENGTH OF REACTIVE POWDER CONCRETE FILLED IN STEEL TUBES[J]. Engineering Mechanics, 2020, 37(4): 41-50. DOI: 10.6052/j.issn.1000-4750.2019.04.0236

钢管活性粉末混凝土界面粘结强度计算方法研究

基金项目: 国家重点研发计划项目(2017YFC0703406)
详细信息
    作者简介:

    刘乐(1994-),男,陕西人,硕士生,主要从事钢-混凝土组合结构研究(E-mail:liu_le115@163.com);史庆轩(1963-),男,山东人,教授,博士,博导,主要从事混凝土结构及其抗震研究(E-mail:shiqx@xauat.edu.cn);王朋(1987-),男,山东人,副教授,博士,硕导,主要从事混凝土结构及其抗震研究(E-mail:jdwp0822@sina.cn).

    通讯作者:

    王秋维(1982-),女,陕西人,副教授,博士,硕导,主要从事钢-混凝土组合结构及其抗震研究(E-mail:wqw0815@126.com).

  • 中图分类号: TU398

A CALCULATION METHOD OF THE INTERFACE BOND STRENGTH OF REACTIVE POWDER CONCRETE FILLED IN STEEL TUBES

  • 摘要: 为研究钢管活性粉末混凝土(RPC)的粘结滑移机理,对10个钢管约束RPC试件进行单轴推出试验,分析了试件的破坏特征、荷载-滑移曲线和钢管应变,探讨了长径比、径厚比以及RPC强度的影响规律,结果表明:套箍系数较小时,荷载-滑移曲线有明显的下降段,较大时未出现下降;粘结强度总体随径厚比的减小和长径比的增大而提高,RPC强度的影响不明显;当粘结应力达到粘结强度时,钢管的横向变形系数超过泊松比,其约束作用开始发挥。在此基础上,建立了钢管内压力与粘结应力的关系,并通过试验数据回归提出了钢管约束RPC粘结强度计算模型,公式计算与试验结果符合较好。
    Abstract: To study the bond-slip mechanism of reactive powder concrete (RPC) filled in steel tubes, ten push-out tests were carried out on RPC filled in steel tube specimens. The failure patterns, load-slip curves and steel tube strains of specimens were analyzed. The effects of the length-diameter ratio, radius-thickness ratio and RPC strength on the bond strength are discussed. The results show that there is a sudden drop on the load-slip curves of specimens with small confinement coefficients, while the load capacity increases after the knee of the curves for specimens with large confinement coefficients. The bond strength basically increases with the decrease of the length-diameter ratio and the increase of the radius-thicknessratio. The effect of the RPC strength is not obvious. The steel tube begins to provide RPC confinement when the strain ratio εsh/εsv of steel tube is larger than its Poisson's ratio. The relationship between the internal pressure of the steel tube and the bond stress is established, and the calculation method of the interface bond strength of RPC confined by steel tubes is proposed based on the experimental results. The calculated results are in good agreement with those of the model test.
  • [1] 杨克家, 孙林柱, 李桅, 等. RPC中空受压构件截面设计及受力性能研究[J]. 工程力学, 2016, 33(5):166-175. Yang Kejia, Sun Linzhu, Li Wei, et al. Cross section design of and mechanical performance investigation into RPC hollow members[J]. Engineering Mechanics, 2016, 33(5):166-175. (in Chinese)
    [2] Tao Z, Song T Y, Uy B, et al. Bond behavior in concrete-filled steel tubes[J]. Journal of Constructional Steel Research, 2016(120):81-93.
    [3] Qu X, Chen Z, Nethercot D A, et al. Load-reversed push-out tests on rectangular CFST columns[J]. Journal of Constructional Steel Research, 2013(81):35-43.
    [4] Chen Y, Feng R, Shao Y B, et al. Bond-slip behaviour of concrete-filled stainless steel circular hollow section tubes[J]. Journal of Constructional Steel Research, 2017(130):248-263.
    [5] 康希良, 程耀芳, 张丽, 等. 钢管混凝土粘结一滑移本构关系理论分析[J]. 工程力学, 2009, 26(10):74-78. Kang Xiliang, Cheng Yaofang, Zhang Li, et al. Theoretical analysis of bond-slip constitutive ralationship for CFST[J]. Engineering Mechanics, 2009, 26(10):74-78. (in Chinese)
    [6] 李小刚, 童根树. 考虑抗滑移刚度的钢管混凝土柱的荷载传递[J]. 工程力学, 2017, 34(11):94-106. Li Xiaogang, Tong Genshu. Loap transfer in concrete-filled steel tubular columns considering slip stiffness[J]. Engineering Mechanics, 2017, 34(11):94-106. (in Chinese)
    [7] 王秋维, 王志伟, 陶毅, 等. 配合比及养护制度对活性粉末混凝土强度影响的试验研究[J]. 西安建筑科技大学学报(自然科学版), 2017, 49(3):382-387. Wang Qiuwei, Wang Zhiwei, Tao Yi, et al. Experimental research on effect of mix ratio and curing system on the strength of reactive powder concrete[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2017, 49(3):382-387. (in Chinese)
    [8] 闫志刚, 安明喆, 吴捧捧, 等. 钢管活性粉末混凝土界面粘结强度试验研究[J]. 中国铁道科学, 2009, 30(6):7-11. Yan Zhigang, An Mingzhe, Wu Pengpeng, et al. Experimental study of the bond strength at the interface of reactive powder concrete-filled steel tube columns[J]. China Rail Way Science, 2009, 30(6):7-11. (in Chinese)
    [9] 柯晓军, 孙海洋, 陈宗平, 等. 钢管高强混凝土界面力学性能试验研究及黏结强度计算[J]. 建筑结构学报, 2015, 36(增刊1):401-406. Ke Xiaojun, Sun Haiyang, Chen Zongping, et al. Interface mechanical behavior test and bond strength calculation of high-strength concrete filled circular steel tube[J]. Journal of Building Structures, 2015, 36(Suppl 1):401-406. (in Chinese)
    [10] 黄文金, 盛叶, 张正宾, 等. 钢管-钢纤维活性粉末混凝土界面黏结强度试验研究[J]. 建筑结构学报, 2017, 38(增刊1):502-514. Huang Wenjin, Sheng Ye, Zhang Zhengbin, et al. Experimental study on bond strength of interface between steelfiber reinforced reactive powder concrete and steel tube[J]. Journal of Building Structures, 2017, 38(Suppl 1):502-514. (in Chinese)
    [11] GB/T 31387-2015, 活性粉末混凝土[S]. 北京:中国标准出版社, 2015. GB/T 31387-2015, Reactive powder concrete[S]. Beijing:Standards Press of China, 2015. (in Chinese)
    [12] Lü W Q, Han L H. Investigation on bond strength between recycled aggregate concrete (RAC) and steel tube in RAC-filled steel tubes[J]. Journal of Constructional Steel Research, 2019(155):438-459.
    [13] 徐芝纶. 弹性力学[M]. 北京:高等教育出版社, 2016:226-251. Xu Zhilun. Theory of elasticity[M]. Beijing:Higher Education Press, 2016:226-251. (in Chinese)
  • 期刊类型引用(16)

    1. FENG Xian-dao,ZHANG Zuo-jin,FANG Hui,LI Hua-jun. Seismic Performance of a Circular Steel Tube-RC Structure with UHPC Grouted Filled. China Ocean Engineering. 2025(01): 111-124 . 必应学术
    2. 姜磊,刘永健,周绪红,陈宝春,牟廷敏,刘君平,陈洪明. 钢管混凝土组合结构桥梁设计原理与技术发展综述. 中国公路学报. 2025(03): 278-302 . 百度学术
    3. 杜国锋,曹煊,谢向东,张继承. 高强钢管超高性能混凝土界面黏结滑移性能试验. 河南理工大学学报(自然科学版). 2024(01): 180-188 . 百度学术
    4. 李俊华,王维宸,周春恒,陈志辉. 冻融循环环境下方钢管混凝土粘结强度试验研究. 工程力学. 2024(S1): 206-214 . 本站查看
    5. 冯先导,刘聪聪,林红星. 预制桩芯桩帽结构承载性能及安装工艺试验研究. 水运工程. 2024(11): 215-220 . 百度学术
    6. 朱张峰,RICHARD Liew,杜咏,姚兵. 装配式组合结构柱高强钢管连接节点界面黏结性能试验. 工业建筑. 2023(04): 120-124+179 . 百度学术
    7. 王占锋,谢东武. 超高强钢筋混凝土抗腐蚀性影响因素研究. 科技通报. 2022(01): 77-83 . 百度学术
    8. 廖栩,李吉人,王庆利. 轴压荷载下中空夹层钢管混凝土抗扭性能试验研究. 建筑结构. 2022(06): 90-96+125 . 百度学术
    9. 曾彦钦,徐礼华,吴方红,余敏,池寅. 钢管含粗骨料超高性能混凝土短柱轴压性能研究. 工程力学. 2022(10): 68-78 . 本站查看
    10. 王秋维,梁林,史庆轩,王朋. 方钢管超高性能混凝土界面黏结滑移性能. 湖南大学学报(自然科学版). 2022(11): 116-125 . 百度学术
    11. 程高,张之恒,谢亮,姬子田. 基于桁梁实桥试验的钢管混凝土界面传力机制. 交通运输工程学报. 2022(06): 158-168 . 百度学术
    12. 张萍. 水工建筑物超高强混凝土抗腐蚀性能的影响规律研究. 黑龙江水利科技. 2022(11): 35-39 . 百度学术
    13. 高春彦,原淼淼,王佳丽,孙凯琦,赵宁. 钢管UHPC界面粘结滑移力学性能研究. 建筑结构. 2022(S2): 1369-1374 . 百度学术
    14. 谢磊,李庆华,徐世烺. 冲击荷载下免蒸养活性粉末混凝土分形特征研究. 工程力学. 2021(03): 169-180 . 本站查看
    15. 廖栩,李吉人,王庆利. 压-扭作用下中空夹层钢管混凝土的破坏机理分析. 混凝土与水泥制品. 2021(12): 67-74 . 百度学术
    16. 陈宝春,李莉,罗霞,韦建刚,赖秀英,刘君平,丁庆军,李聪. 超高强钢管混凝土研究综述. 交通运输工程学报. 2020(05): 1-21 . 百度学术

    其他类型引用(23)

计量
  • 文章访问数:  565
  • HTML全文浏览量:  87
  • PDF下载量:  184
  • 被引次数: 39
出版历程
  • 收稿日期:  2019-04-28
  • 修回日期:  2019-08-01
  • 刊出日期:  2020-04-13

目录

    /

    返回文章
    返回