STUDY ON FLOOD ACTION MECHANISM AND FLOOD RESISTANCE OF HIGHWAY GIRDER BRIDGE SUPERSTRUCTURE
-
摘要: 洪水灾害是影响桥梁结构安全运行的严重威胁,洪水发生时流水冲击力直接作用于桥梁结构,以往桥梁设计中对水位线以上的桥梁上部结构可能遭受的洪水作用缺乏考虑,造成桥梁上部结构抗洪能力不足。该文以洪水的力学性能为基础,研究了洪水对桥梁上部结构的作用机理,提出了洪水破坏力计算公式及相关参数的确定方法,分析了桥梁上部结构在洪水作用下的主要失效模式及对应的力学平衡方程。研究表明,洪水对桥梁上部结构的主要作用力包括水平冲击力、竖向上浮力、上托力。相应的桥梁上部结构的破坏模式主要有支座滑动、支座剪切、整体倾覆等。在此基础上,针对桥梁上部结构的主要薄弱点,遵循洪水破坏力与结构抗力之间的平衡关系,提出了桥梁上部结构发生支座滑动破坏、支座剪切破坏、整体倾覆破坏模式下的抗洪性能分析思路及计算公式,对公路桥梁的抗洪设计及安全性评估具有指导意义。Abstract: Flood is a serious threat to the bridge across the river, the direct acting force of flood on a bridge is the impact of water. In the past, the flood action on bridge superstructure above water level was neglected in bridge design, which results in the insufficient flood resistance of bridge superstructure. Based on mechanical properties of flood water, it studies the action mechanism of flood on bridge superstructure and puts forward the calculation formula of flood damage force and the determination method of related parameters; and then analyzes the main failure mode of superstructure under the action of flood. The results show that the bridge superstructure is mainly affected by horizontal impact force, vertical buoyancy force and uplift force under the action of flood; the failure modes of the superstructure include sliding of bearing, shear of bearing and overall overturning. On this basis, according to the balance and stability theory between the flood damage and structural resistance, the design method and calculation formula of the bridge superstructure subjected to failure modes of bearing sliding failure, bearing shear failure and overall overturning are proposed. The results can be used for the flood prevention design and safety assessment of highway bridges.
-
Keywords:
- bridge engineering /
- girder bridge /
- superstructure /
- flood action /
- flood resistance /
- stability /
- theoretical analysis
-
-
-
[1] 肖盛燮. 公路与桥梁抗洪分析 [M]. 北京: 人民交通出版社, 1999: 1 − 2. Xiao Shengxie. Analysis of flood resistance of highway and bridge [M]. Beijing: China Communications Press, 1999: 1 − 2. (in Chinese)
[2] 刘亢, 刘均利, 余文成. 2007−2015年洪水导致垮塌桥梁的统计分析[J]. 城市道桥与防洪, 2017(1): 90 − 92. Liu Kang, Liu Junli, Yu Wencheng. Statistical analysis of bridge collapse caused by flood from 2007 to 2015 [J]. Urban Roads and Bridges and Flood Control, 2017(1): 90 − 92. (in Chinese)
[3] Wardhana K, Hadipriono F C. Analysis of recent bridge failures in the United States [J]. Journal of Performance of Constructed Facilities, 2003, 17(3): 144 − 150. doi: 10.1061/(ASCE)0887-3828(2003)17:3(144)
[4] 张辉. 山洪、流冰对桥梁的破坏机理及计算模式研究 [D]. 大连: 大连理工大学, 2001. Zhang Hui. Study on failure mechanism and calculation model of mountain torrents and ice flow on bridges [D]. Dalian: Dalian University of Technology, 2001. (in Chinese)
[5] Reed D W . A review of British railway bridge flood failures [C]// Hydrology: Science and Practice for the 21st Century. 2004 , 1: 210 − 216.
[6] 郭俊峰. 凌汛期大跨径桥梁的安全性评价 [D]. 武汉: 武汉理工大学, 2008. Guo Junfeng. Safety evaluation of long span bridges during the flood season [D]. Wuhan: Wuhan University of Technology, 2008. (in Chinese)
[7] 王克成, 郑雪, 夏玉荣. 西南地区公路桥梁山洪灾害破坏机理研究[J]. 公路交通技术, 2010(6): 88 − 93. doi: 10.3969/j.issn.1009-6477.2010.06.023 Wang Kecheng, Zheng Xue, Xia Yurong. Research on damage mechanism of mountain flood disasters to highway bridges in the southwest [J]. Technology of Highway and Transport, 2010(6): 88 − 93. (in Chinese) doi: 10.3969/j.issn.1009-6477.2010.06.023
[8] 赵红. 秦巴山区公路桥涵抗水毁计算理论研究 [D].西安: 长安大学, 2012. Zhao Hong. Study on the calculation theory of water damage resistance of highway bridges and culverts in qinba mountain [D]. Xi’an: Chang’an University, 2012. (in Chinese)
[9] 邵鹏. 洪水作用下简支箱型梁桥结构安全性研究 [D]. 重庆: 重庆大学, 2015. Shao Peng. Study on safety of simply supported box girder bridge structure Under the action of flood [D]. Chongqing: Chongqing University, 2015. (in Chinese)
[10] 肖诗云, 王晓庆. 洪水演进模型及冲击荷载数值分析[J]. 工程力学, 2010, 27(9): 35 − 40. Xiao Shiyun, Wang Xiaoqing. Study on routing model and impact loading of flood [J]. Engineering Mechanics, 2010, 27(9): 35 − 40. (in Chinese)
[11] 胡运进, 万五一, 蔡甫款, 等. 窄深矩形断面明渠流速分布的研究[J]. 浙江大学学报(工学版), 2008, 42(1): 183 − 187. doi: 10.3785/j.issn.1008-973X.2008.01.033 Hu Yunjin, Wan Wuyi, Cai Fukuan, et al. Velocity distribution in narrow and deep rectangular open channels [J]. Journal of Zhejiang University (Engineering Science), 2008, 42(1): 183 − 187. (in Chinese) doi: 10.3785/j.issn.1008-973X.2008.01.033
[12] 尹进高. 梯形渠道断面流速分布规律及测流技术试验研究 [D]. 西安: 西北农林科技大学, 2009. Yin Jingao. Experimental study on velocity distribution rule of trapezoidal channel section and flow measurement technology [D]. Xi’an: Northwest Agriculture & Forestry University, 2009. (in Chinese)
[13] 严军, 王二平, 孙东坡, 等. 矩形断面明渠流速分布特性的试验研究[J]. 武汉大学学报(工学版), 2005, 38(5): 57 − 62. Yan Jun, Wang Erping, Sun Dongpo, et al. Experimental study on distribution properties of velocity in rectangular open channel [J]. Engineering Journal of Wuhan University, 2005, 38(5): 57 − 62. (in Chinese)
[14] Malavasi S, Guadagnin A. Hydrodynamic loading on river bridges [J]. Hydraulic Engineering, 2003, 129(11): 854 − 861. doi: 10.1061/(ASCE)0733-9429(2003)129:11(854)
[15] Witzany J, Cejka T, Zigler R. Failure resistance of historic stone bridge structure of Charles Bridge. Ⅱ: Susceptibility to floods [J]. Journal of Performance of Constructed Facilities, 2008, 22(2): 83 − 91. doi: 10.1061/(ASCE)0887-3828(2008)22:2(83)
[16] Hung C C, Yau W G. Behavior of scoured bridge piers subjected to flood-induced loads [J]. Engineering Structures, 2014, 80: 241 − 250. doi: 10.1016/j.engstruct.2014.09.009
[17] JTG D62−2015, 公路钢筋混凝土及预应力混凝土桥涵设计规范 [S]. 北京: 人民交通出版社, 2015. JTG D62−2015, Code for design of highway reinforcedconcrete and prestressed concrete bridges and culverts [S]. Beijing: China Communications Press, 2015. (in Chinese)
-
期刊类型引用(7)
1. 王靖程,叶爱君,王晓伟,李越. 液化大变形场地桩柱式墩桥梁震后竖向承载能力损失评估. 工程力学. 2025(06): 174-184 . 本站查看
2. 高洪梅,张淑姗,蔡鑫涛,张鑫磊,王志华,孙晋晶,黎冰. EPS混合土地基-沉箱抗震性能振动台模型试验. 工程力学. 2024(05): 192-200 . 本站查看
3. 杨耀辉,辛公锋,陈育民,李召峰. 排水桩-网复合地基处置可液化路堤地基的振动台试验研究. 岩土力学. 2024(S1): 178-186 . 百度学术
4. 贾科敏,许成顺,杜修力,张小玲,崔春义. 液化侧向扩展场地-群桩基础-结构体系地震破坏反应大型振动台试验方案设计. 工程力学. 2023(07): 121-136 . 本站查看
5. 张石平,陈曦菲,姚绍伟,邓晨. 竖向地震作用下饱和土-桩体系的耦合动力响应研究. 工程力学. 2023(09): 81-97 . 本站查看
6. 董召先,孙治国,李宏男,王东升,司炳君. 液化场地钢筋混凝土桥墩残余位移分析. 工程力学. 2023(10): 154-168 . 本站查看
7. 汤继川,李宁,李忠献. 基于强化学习的水下振动台时滞补偿与控制优化. 工程力学. 2023(12): 65-75 . 本站查看
其他类型引用(5)