考虑土-结构相互作用的核电厂楼层反应谱研究

高永武, 王涛, 戴君武, 金波

高永武, 王涛, 戴君武, 金波. 考虑土-结构相互作用的核电厂楼层反应谱研究[J]. 工程力学, 2020, 37(10): 116-124. DOI: 10.6052/j.issn.1000-4750.2019.11.0675
引用本文: 高永武, 王涛, 戴君武, 金波. 考虑土-结构相互作用的核电厂楼层反应谱研究[J]. 工程力学, 2020, 37(10): 116-124. DOI: 10.6052/j.issn.1000-4750.2019.11.0675
GAO Yong-wu, WANG Tao, DAI Jun-wu, JIN Bo. STUDY ON FLOOR-RESPONSE SPECTRUM OF NUCLEAR POWER PLANTS CONSIDERING SOIL-STRUCTURE INTERACTIONS[J]. Engineering Mechanics, 2020, 37(10): 116-124. DOI: 10.6052/j.issn.1000-4750.2019.11.0675
Citation: GAO Yong-wu, WANG Tao, DAI Jun-wu, JIN Bo. STUDY ON FLOOR-RESPONSE SPECTRUM OF NUCLEAR POWER PLANTS CONSIDERING SOIL-STRUCTURE INTERACTIONS[J]. Engineering Mechanics, 2020, 37(10): 116-124. DOI: 10.6052/j.issn.1000-4750.2019.11.0675

考虑土-结构相互作用的核电厂楼层反应谱研究

基金项目: 国家重点研发计划项目(2018YFC1504405);中国地震局地震科技星火计划项目(XH18061Y);河北省高等教育教学改革研究与实践项目(2018GJJG471)
详细信息
    作者简介:

    高永武(1986−),男,河北张家口人,高工,博士,主要从事结构工程抗震研究(E-mail:gaoywjg@163.com)

    戴君武(1967−),男,山东昌邑人,研究员,博士,主要从事结构抗震减震方面研究(E-mail: junwudai@126.com)

    金 波(1973−),男,河北密云人 ,副研究员,博士,主要从事结构工程与工程抗震研究(E-mail: jinbo@iem.net.cn)

    通讯作者:

    王 涛(1977−),男,山东邹城人,研究员,博士,主要从事结构工程抗震研究(E-mail: wangtao@iem.ac.cn)

  • 中图分类号: TU311.3;TU435

STUDY ON FLOOR-RESPONSE SPECTRUM OF NUCLEAR POWER PLANTS CONSIDERING SOIL-STRUCTURE INTERACTIONS

  • 摘要: 楼层谱是核电厂设备、管道抗震设计和抗震裕度评估的重要依据。为了研究不同烈度下场地土对核电厂楼层谱的影响,该文使用叠层剪切土箱模拟土体及其边界条件,对某新型核电厂房进行1∶25缩尺模型地震模拟振动台实验。选取10组水平加速度地震动记录,按照运行安全地震动(OBE)0.15 g、极限安全地震动(SSE)0.30 g和超设计基准地震动(ULE)0.75 g作为输入。在考虑土-结构相互作用条件下,研究不同地震动强度引起楼层谱的变化规律,并对《核电厂抗震设计规范》中楼层谱确定方法的输入基准地震动进行讨论分析。根据设备响应比分析,揭示了现有核电设备抗震裕度评估方法具有一定的保守性,特别是设备响应比为1/1.5~1.5,采用现有抗震裕度评估方法得到的设备抗震裕度可能小于审核地震动。为了得到该设备的真实抗震裕度,建议对这些设备做更详细分析。
    Abstract: Floor response spectrum plays an important role in the seismic design and in the seismic margin analysis for the facilities and pipes inside a nuclear power plant (NPP). This study presents the results of a set of shaking table tests on a scaled nuclear power plant structure of 1∶25, with the underlying soil simulated by a multi-functional laminated shear container where the viscous-elastic boundary has been well reproduced. A group of 10 ground motion records are selected as the input. The peak ground accelerations (PGA) of these motions are scaled to the operational basis earthquake (OBE 0.15 g), the safely shutdown earthquake (SSE 0.30 g), and the ultimate earthquake beyond the design basis standard (ULE 0.75 g), respectively. Considering the soil-structure interaction, the change of floor response spectra caused by the input intensity has been studied. The standard input earthquake for floor response analysis suggested by the "Code for seismic design of nuclear power plants" is also discussed accordingly. According to the analysis of equipment response, it is revealed that the evaluation method of seismic margin of existing nuclear power plant equipment is conservative. Especially the equipment response ratio of 1/1.5 ~ 1.5, the existing seismic margin assessment method to obtain the equipment seismic margin may be less than the qualified ground motion. In order to obtain the true seismic margin of the equipment, it is suggested that these kinds of equipment should be analyzed in a more detail.s of equipment should be analyzed in a more detail.
  • 图  1   核电厂土-结构相互作用模型振动台试验

    Figure  1.   NPP shaking table test considering soil-structure interaction

    图  2   屏蔽厂房及内部结构简化图 /mm

    Figure  2.   Simplified diagram of shield and internal structures

    图  3   土动模量比和阻尼比与动剪应变关系试验曲线

    Figure  3.   Soil dynamic modulus ratio and damping ratio with respect to dynamic shear strain

    图  4   加速度传感器布置图 /mm

    Figure  4.   Deployment of accelerometers

    图  5   输入地震动标准化5%阻尼比加速度反应谱

    Figure  5.   Normalized acceleration response spectrum of selected ground motions considering 5% damping ratio

    图  6   不同强度输入A4位置处5%阻尼比反应谱

    Figure  6.   A4 response spectrum with 5% damping ratio under different earthquakes

    图  7   OBE地震下5%阻尼比楼层谱(PGA 0.15 g )

    Figure  7.   Floor response spectrum with 5% damping ratio under OBE earthquakes (PGA 0.15 g)

    图  8   SSE地震下5%阻尼比楼层谱(PGA 0.30 g)

    Figure  8.   Floor response spectrum with 5% damping ratio under SSE earthquakes (PGA 0.30 g)

    图  9   ULE地震下5%阻尼比楼层谱

    Figure  9.   Floor response spectrum with 5% damping ratio under ULE earthquakes (PGA 0.75 g)

    图  10   不同地震动强度输入各楼层谱特征参数

    Figure  10.   Profile parameters of normalized floor response spectrum at different stories under different earthquakes

    图  11   试验B2楼层谱

    Figure  11.   B2 floor response spectrum of test of shaking table

    图  12   楼层响应比

    Figure  12.   Ratio of floor response

    图  13   设备响应比

    Figure  13.   Ratio of equipment response

    表  1   屏蔽厂房及内部结构振动台模型一致相似关系

    Table  1   General similitude law of shield building and internal structure

    物理量屏蔽厂房内部结构
    长度L1∶251∶25
    等效密度ρ=ma/L3/mp1∶1.1971∶1.114
    周期T=1/f1∶4.041∶3.85
    位移d=L1∶251∶25
    速度v=f×L1∶6.191∶6.49
    加速度a=L×f21∶1.531∶1.67
    频率f= (E/ρ)1/2/L4.04∶13.85∶1
    下载: 导出CSV

    表  2   试验中输入地震动记录

    Table  2   Input ground motion records for shaking table tests

    输入顺序地震动名称震级Mw震中距/km持时/s时间间隔/s
    1Imperial Valley, 1940, El Centro6.91053.480.02
    21995 Kobe6.93.460.000.02
    31994 Northridge6.76.460.000.02
    4Palos Verdes7.11.560.000.02
    5Morgan Hill, 1984, Gilroy6.21560.000.02
    6West. Washington, Olympia, 19496.55680.000.02
    7Puget Sound, Wa., Olympia, 19497.18081.840.02
    8Tabas, 19787.41.250.000.02
    9C. Mendocino, 1992, Petrolia7.18.560.000.02
    10Northridge, 1994, Olive View6.76.460.000.02
    下载: 导出CSV
  • [1] 刘燕军, 林皋, 李建波, 等. 计算核电厂楼层反应谱的直接法及其对比分析[J]. 世界地震工程, 2011, 27(2): 93 − 99.

    Liu Yanjun, Lin Gao, Li Jianbo, et al. A direct method for computation of floor response spectrum of a nuclear power plant [J]. World Earthquake Engineering, 2011, 27(2): 93 − 99. (in Chinese)

    [2] 李忠献, 李忠诚, 沈望霞. 核反应堆厂房结构楼层反应谱的敏感性分析[J]. 核动力工程, 2005, 26(1): 44 − 50. doi: 10.3969/j.issn.0258-0926.2005.01.010

    Li Zhongxian, Li Zhongcheng, Shen Wangxia. Sensitivity analysis for floor response spectra of nuclear reactor buildings [J]. Nuclear Power Engineering, 2005, 26(1): 44 − 50. (in Chinese) doi: 10.3969/j.issn.0258-0926.2005.01.010

    [3] 李建波, 林皋, 钟红, 等. 核电结构设计中参数不确定性对楼层谱计算影响分析[J]. 大连理工大学学报, 2011, 51(5): 725 − 730. doi: 10.7511/dllgxb201105017

    Li Jianbo, Lin Gao, Zhong Hong, et al. Analyses of effect of parameter uncertainty in NPP design on computation of floor response spectra [J]. Journal of Dalian University of Technology, 2011, 51(5): 725 − 730. (in Chinese) doi: 10.7511/dllgxb201105017

    [4] 谢君斐. 罗东(台湾)土-结构相互作用大比例模型试验的启示(I)[J]. 世界地震工程, 1993(3): 41 − 52.

    Xie Junfei. The learning from the large scale Lotong soil-structure interaction experiments (I) [J]. World Earthquake Engineering, 1993(3): 41 − 52. (in Chinese)

    [5] 谢君斐. 罗东(台湾)土-结构相互作用大比例模型试验的启示(II)[J]. 世界地震工程, 1993(4): 49 − 59.

    Xie Junfei. The learning from the large scale Lotong soil-structure interaction experiments (II) [J]. World Earthquake Engineering, 1993(4): 49 − 59. (in Chinese)

    [6]

    EPRI-TR-103959.Methodology for Developing Seismic Fragilities [R]. Palo Alto, California:Electric Power Research Institute (EPRI), 1994.

    [7]

    EPRI-1002988. Seismic Fragility Application Guide [R]. Palo Alto, California: Electric Power Research Institute (EPRI), 2002.

    [8]

    EPRI NP-6041-SL. A methodology for assessment of nuclear power plant seismic margin (Revision1) [R]. Palo Alto, California: Electric Power Research Institute(EPRI), 1991.

    [9]

    EPRI-1019200. Seismic Fragility Application Update Guide [R].Palo Alto, California: Electric Power Research Institute(EPRI), 2002.

    [10] 胡晓英. 核电厂保护系统机柜抗震裕度研究[J]. 核动力工程, 2014, 35(5): 28 − 30.

    Hu Xiaoying. Study on seismic margin of protection system cabinet for nuclear power plants [J]. Nuclear Power Engineering, 2014, 35(5): 28 − 30. (in Chinese)

    [11] 李强, 岑鹏, 甄洪栋, 等. 安全壳喷淋热交换器抗震裕度分析 [C]//第十七届全国反应堆结构力学会议, 上海, 2012.

    Li Qiang, Cen Peng, Zhen Hongdong, et al. The seismic margin analysis of a heat exchanger of the containment spraying cooling system of nuclear power plants [C]//17th national Conference on Structural Mechanicsin Rector Technology, Shanghai, 2012. (in Chinese)

    [12] 高永武. 核电厂安全壳及某抗震Ⅰ类设备的抗震裕度评估方法研究 [D]. 哈尔滨: 中国地震局工程力学研究所, 2016.

    Gao Yongwu. Study on containment and equipment classified of seismic category Ⅰ seismic margin assessment of nuclear power plants [D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2016. (in Chinese)

    [13] 高永武, 王涛, 戴君武, 等. 不同场地条件下某新型核电厂房的地震响应试验研究[J]. 振动与冲击, 2017, 36(18): 214 − 222.

    Gao Yongwu, Wang Tao, Dai Junwu, et al. Experimental research on seismic responses of a new type of nuclear power plant under different site conditions [J]. Journal of Vibration and Shock, 2017, 36(18): 214 − 222. (in Chinese)

    [14] 赵春风, 陈健云, 王静峰. AP1000核电厂房动力特性参数化分析与优化[J]. 工程力学, 2017, 34(增刊): 282 − 288.

    Zhao Chunfeng, Chen Jianyun, Wang Jingfeng. Dynamic performance of AP1000 nuclear power plant by parametrical analysis and optimizatoin [J]. Engineering Mechanics, 2017, 34(Suppl): 282 − 288. (in Chinese)

    [15]

    Wang D, Wu C, Zhang Y. Elastic-plastic behavior of AP1000 nuclear islandstructure under mainshock-aftershocksequences [J]. Annals of Nuclear Energy, 2019, 123(4): 1 − 7.

    [16] 李振宝, 李晓亮, 唐贞云, 等. 土-结构动力相互作用的振动台试验研究综述[J]. 震灾防御技术, 2010, 5(4): 439 − 450.

    Li Zhenbao, Li Xiaoliang, Tang Zhenyun, et al. Review of research on shaking table test of dynamicsoil-structure interaction [J]. Technology for Earthquake Disaster Prevention, 2010, 5(4): 439 − 450. (in Chinese)

    [17] GB50267−97. 核电厂抗震设计规范 [S]. 北京: 中国计划出版社, 1997.

    GB50267−97. Code for seismic design of nuclear power plants [S]. Beijing: China Planning Press, 1997. (in Chinese)

    [18] 胡进军, 李琼林, 邬迪, 等. 基于PSHA的核电厂近断层抗震设计谱构建方法[J]. 工程力学, 2019, 36(5): 192 − 199.

    Hu Jinjun, Li Qionglin, Wu Di, et al. Construction method of the near fault seismic design spectrum for nuclear power plants based on probabilistic seismic hazard analysis [J]. Engineering Mechanics, 2019, 36(5): 192 − 199. (in Chinese)

    [19]

    NRC Regulatory guide 1.60 (revision 2). Design response spectra for seismic design of Nuclear Power Plants [S]. Washington: U.S Unclear Regulatory Commission, 2014.

    [20] 白晋华, 赵树峰, 谌登华, 等. 运行核电厂抗震裕度评价研究[J]. 原子能科学技术, 2012, 46(12): 1446 − 1450.

    Bai Jinhua, Zhao Shufeng, Chen Denghua, et al. Research on seismic margin analysis of operation nuclear power plant [J]. Atomic Energy Science and Technology, 2012, 46(12): 1446 − 1450. (in Chinese)

    [21]

    NRC Regulatory Guide 1.122(Revision 1). Development of floor design response spectra for seismic design of floor supported equipment or components [S]. Washington:U.S Unclear Regulatory Commission, 1978.

    [22]

    ASCE 4−98. Seismic analysis of Safety-Related Nuclear structures and commentary [S]. Virinia:American Society of Civil Engineers, 1999.

  • 期刊类型引用(10)

    1. 黑宝平,周世安. 地震激励下快堆堆芯组件三维碰撞非线性分析研究. 工程力学. 2025(02): 245-252 . 本站查看
    2. 周中一,魏章超,滕睿,李海洋,王涛. 考虑土结相互作用的核岛结构振动台试验研究. 工程力学. 2025(S1): 161-172 . 本站查看
    3. 杨益,程文明. 基于罚函数的桥式起重机地震跳轨仿真分析. 起重运输机械. 2024(04): 32-37 . 百度学术
    4. 杨兰兰,陈杰,徐明悦,付晨,吉锋. 拟合楼层反应谱的三向地震动时程生成方法研究. 应用力学学报. 2024(02): 422-431 . 百度学术
    5. 刘荣恒,柏文,戴君武,姜涛,崔超楠. 基于强震记录的建筑结构楼层设计谱研究. 工程力学. 2024(12): 176-188 . 本站查看
    6. 程业,潘旦光,陈清军,付相球,李雪菊. 地下空间结构对邻近地上结构地震反应影响振动台实验. 工程力学. 2022(01): 91-99 . 本站查看
    7. 张欣刚,王海明,姚文莉,齐朝晖,何颖. 考虑粘滑效应的核电站环行起重机地震瞬态响应分析. 工程力学. 2022(04): 39-52 . 本站查看
    8. 吴雄伟,张亿,杨江,林强. 核电厂地震矢量和自动停堆系统的设计与实现. 电子器件. 2022(03): 599-604 . 百度学术
    9. 史晓洁. SSI效应对高层框架结构抗震性能的影响. 计算机辅助工程. 2022(03): 63-66+73 . 百度学术
    10. 宋辰宁,段志宁,翟玉强,胡令辉. 考虑FSI效应的核岛结构楼层反应谱研究. 山东建筑大学学报. 2022(06): 18-26 . 百度学术

    其他类型引用(10)

图(13)  /  表(2)
计量
  • 文章访问数:  853
  • HTML全文浏览量:  233
  • PDF下载量:  109
  • 被引次数: 20
出版历程
  • 收稿日期:  2019-11-17
  • 修回日期:  2020-04-12
  • 网络出版日期:  2020-05-24
  • 刊出日期:  2020-10-09

目录

    /

    返回文章
    返回