A STRESS-INDUCED FRACTIONAL DILATANCY RULE FOR CLAYS
-
摘要: 建立了适用于黏性土的分数阶下加载面模型,该模型所采用的分数阶塑性流动法则能够在不引入塑性势函数的情况考虑塑性流动方向与土体物理屈服面之间的非正交特性,进而统一地描述相关联和非相关联塑性流动法则。基于该流动法则可以得到一个新的应力诱导分数阶剪胀方程以考虑超固结比对黏性土剪胀特性的影响。理论分析结果表明,在相同的应力水平下,土体剪胀量会随着超固结比增大而逐渐减小。相比较修正剑桥模型,该文模型仅额外地引入一个与土体剪胀特性相关的模型参数,并且能够对超固结黏土的应变软化和剪胀特性进行合理的描述。模型计算结果与试验结果对比分析结果表明,该文模型能够准确地描述黏性土在超固结状态下的应力-应变响应和剪胀特性。Abstract: A fractional sub-loading surface model for clays is developed in the present study. The fractional plastic flow rule adopted in the proposed model is able to account for the non-normality of the flow direction with respect to the yield locus without introducing a plastic potential. Hence, a unified description of the associated and non-associated plastic flow rules is achieved. A stress-induced fractional dilatancy rule can be conveniently derived through the fractional plastic flow rule to consider the effect of the over-consolidation ratio on the dilatancy of clays. The analysis shows that increasing the over-consolidation ratio will reduce the dilatancy under a constant loading pressure. Compared with the modified Cam-clay model, the proposed model introduces only one extra dilatancy-related parameter and can describe the strain-softening and dilatancy features of over-consolidated clays. Model predictions show good agreement with the experimental results, indicating the capability of the proposed model in describing the behavior of clays.
-
-
表 1 模型参数敏感性试验材料参数
Table 1 Parameters used in model sensitive analysis
参数名称 参数取值 参考临界状态孔隙比eΓ 1.23 初始孔隙比e0 0.83 泊松比ν 0.2 临界状态剪应力比M 0.94 压缩模量λ 0.093 回弹模量κ 0.02 剪胀特性相关模型参数m 0.0、0.3、0.6和0.9 表 2 模型参数敏感性试验材料参数
Table 2 Parameters used in model sensitive analysis
土体名称 参考临界状态
孔隙比eΓ泊松比ν 临界状态剪应力比M 压缩模量λ 回弹模量κ 剪胀特性相关模型参数m Black Kaolin
黏土1.65 0.2 0.83 0.244 0.079 0.2 Fujinomori
黏土1.23 0.2 1.36 0.093 0.020 0.9 -
[1] Roscoe K H, Burland J B. On the generalized stress-strain behaviour of wet clay [J]. Engineering Plasticity, 1968: 535 − 609.
[2] Uchaipichat A, Khalili N. Experimental investigation of thermo-hydro-mechanical behaviour of an unsaturated silt [J]. Géotechnique, 2009, 59(4): 339 − 353. doi: 10.1680/geot.2009.59.4.339
[3] 李海潮, 张 升, 沈 远. 考虑温度影响的岩土材料高阶屈服函数[J]. 岩石力学与工程学报, 2018, 37(12): 2795 − 2803. Li Haichao, Zhang Sheng, Shen Yuan. A high order yield function for geo-materials considering the effect of temperature [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(12): 2795 − 2803. (in Chinese)
[4] Hattab M, HicheR P Y. Dilating behaviour of overconsolidated clay [J]. Soils and Foundations, 2004, 44(4): 27 − 40. doi: 10.3208/sandf.44.4_27
[5] Yin Z Y, Chang C S. Stress-dilatancy behavior for sand under loading and unloading conditions [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(8): 855 − 870. doi: 10.1002/nag.1125
[6] Gao Z, Zhao J, Yin Z Y. Dilatancy relation for overconsolidated clay [J]. International Journal of Geomechanics, 2016, 17(5): 06016035-1 − 06016035-7.
[7] Wang L Z, Yin Z Y. Stress dilatancy of natural soft clay under an undrained creep condition [J]. International Journal of Geomechanics, 2012, 15(5): A4014002-1 − A4014002-5.
[8] 杜修力, 马 超, 路德春. 岩土材料的非线性统一强度模型[J]. 力学学报, 2014, 46(3): 389 − 397. Du Xiuli, Ma Chao, Lu Dechun. Nonlinear unified strength model of geomaterials [J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 389 − 397. (in Chinese)
[9] 殷杰. 结构性软黏土的修正剑桥模型[J]. 工程力学, 2013, 30(1): 190 − 197. Yin Jie. A modified cam clay model for structured soft calys [J]. Engineering Mechanics, 2013, 30(1): 190 − 197. (in Chinese)
[10] Panteghini A, Lagioia R. An extended modified Cam-clay yield surface for arbitrary meridional and deviatoric shapes retaining full convexity and double homothety [J]. Géotechnique, 2018, 68(7): 590 − 601.
[11] Lagioia R, Puzrin A M, Potts D M. A new versatile expression for yield and plastic potential surfaces [J]. Computers & Geotechnics, 1996, 19(3): 171 − 191.
[12] Collins I, Kelly P. A thermomechanical analysis of a family of soil models [J]. Géotechnique, 2002, 52(7): 507 − 518. doi: 10.1680/geot.2002.52.7.507
[13] Alonso E E, Romero E E, Ortega E. Yielding of rockfill in relative humidity-controlled triaxial experiments [J]. Acta Geotechnica, 2016, 11(3): 455 − 477. doi: 10.1007/s11440-016-0437-9
[14] Nguyen L, Fatahi B. Behaviour of clay treated with cement & fibre while capturing cementation degradation and fibre failure–C3F model [J]. International Journal of Plasticity, 2016, 81: 168 − 195. doi: 10.1016/j.ijplas.2016.01.015
[15] Sun Y F, Xiao Y. Fractional order plasticity model for granular soils subjected to monotonic triaxial compression [J]. International Journal of Solids and Structures, 2017, 118: 224 − 234.
[16] Sun Y F, Gao Y F, Zhu Q Z. Fractional order plasticity modelling of state-dependent behaviour of granular soils without using plastic potential [J]. International Journal of Plasticity, 2018, 102: 53 − 69. doi: 10.1016/j.ijplas.2017.12.001
[17] Sun Y F, Zheng C J. Fractional-order modelling of state-dependent non-associated behaviour of soil without using state variable and plastic potential [J]. Advances in Difference Equations, 2019(1): 83.
[18] Qu P F, Zhu Q Z, Sun Y F. Elastoplastic modelling of mechanical behavior of rocks with fractional-order plastic flow [J]. International Journal of Mechanical Sciences, 2019, 163: 105102. doi: 10.1016/j.ijmecsci.2019.105102
[19] 孙逸飞, 沈 扬. 基于分数阶微积分的粗粒料静动力边界面本构模型[J]. 岩土力学, 2018, 39(4): 1219 − 1226. Sun Yifei, Shen Yang. Bounding surface model for granular aggregates incorporating the concept of fractional calculus [J]. Rock and Soil Mechanics, 2018, 39(4): 1219 − 1226. (in Chinese)
[20] Lu D C, Liang J Y, Du X L, et al. Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule [J]. Computers and Geotechnics, 2019, 105: 277 − 290. doi: 10.1016/j.compgeo.2018.10.004
[21] Henkel D J. The effect of overconsolidation on the behaviour of clays during shear [J]. Géotechnique, 1956, 6(4): 139 − 150. doi: 10.1680/geot.1956.6.4.139
[22] Dafalias Y F. Bounding surface plasticity. I: Mathematical foundation and hypoplasticity [J]. Journal of Engineering Mechanics, 1986, 112(9): 966 − 987. doi: 10.1061/(ASCE)0733-9399(1986)112:9(966)
[23] Anandarajah A M, Dafalias Y F. Bounding surface plasticity. III: Application to anisotropic cohesive soils [J]. Journal of Engineering Mechanics, 1986, 112(12): 1292 − 1318. doi: 10.1061/(ASCE)0733-9399(1986)112:12(1292)
[24] Hashiguchi K. Subloading surface model in unconventional plasticity [J]. International Journal of Solids and Structures, 1989, 25(8): 917 − 945. doi: 10.1016/0020-7683(89)90038-3
[25] Hashiguchi K, Chen Z P. Elastoplastic constitutive equation of soils with the subloading surface and the rotational hardening [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(3): 197 − 227. doi: 10.1002/(SICI)1096-9853(199803)22:3<197::AID-NAG914>3.0.CO;2-T
[26] Hashiguchi K, Tsutsumi S, Okayasu T. Evaluation of typical conventional and unconventional plasticity models for prediction of softening behaviour of soils [J]. Géotechnique, 2002, 52(8): 561 − 578. doi: 10.1680/geot.2002.52.8.561
[27] Yao Y P, Hou W, Zhou A N. UH model: Three-dimensional unified hardening model for overconsolidated clays [J]. Géotechnique, 2009, 59(5): 451 − 469. doi: 10.1680/geot.2007.00029
[28] Yao Y P, Zhou A N. Non-isothermal unified hardening model: A thermo-elasto-plastic model for clays [J]. Géotechnique, 2013, 63(15): 1328 − 1345. doi: 10.1680/geot.13.P.035
[29] Nakai T, Hinokio M. A simple elastoplastic model for normally and over consolidated soils with unified material parameters [J]. Soils and Foundations, 2004, 44(2): 53 − 70. doi: 10.3208/sandf.44.2_53
[30] Zhang S, Leng W M, Zhang F, et al. A simple thermo-elastoplastic model for geomaterials [J]. International Journal of Plasticity, 2012, 34: 93 − 113. doi: 10.1016/j.ijplas.2012.01.011
[31] 张 升, 李海潮, 滕继东, 等. 考虑围压依存性的软岩结构性下加载面模型[J]. 岩土工程学报, 2016, 38(7): 1269 − 1276. Zhang Sheng, Li Haichao, Teng Jidong, et al. Structured subloading yield surface model for soft rock considering confining pressure [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1269 − 1276. (in Chinese)
[32] Gajo A, Muir Wood D. A new approach to anisotropic, bounding surface plasticity: General formulation and simulations of natural and reconstituted clay behaviour [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(3): 207 − 241. doi: 10.1002/nag.126
[33] Petalas A L, Dafalias Y F, Papadimitriou A G. Sanisand: An evolving fabric-based sand model accounting for stress principal axes rotation [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(1): 97 − 123. doi: 10.1002/nag.2855
[34] Jocković S, Vukićević M. Bounding surface model for overconsolidated clays with new state parameter formulation of hardening rule [J]. Computers and Geotechnics, 2017, 83: 16 − 29. doi: 10.1016/j.compgeo.2016.10.013
[35] Taiebat M, Dafalias Y F. Sanisand: Simple anisotropic sand plasticity model [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(8): 915 − 948. doi: 10.1002/nag.651
[36] 张 涛, 刘松玉, 蔡国军. 考虑胶结作用的木质素固化粉土边界面塑性模型[J]. 岩土工程学报, 2016, 38(4): 670 − 680. Zhang Tao, Liu Songyu, Cai Guojun. Boundary surface plasticity model for lignin-treated silt considering cementation [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 670 − 680. (in Chinese)
[37] Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel [J]. Progress in Fractional Differentiation and Applications, 2015, 1(2): 73 − 85.
[38] 董晓丽, 赵成刚, 张卫华. 考虑相变状态的较密实饱和砂土弹塑性模型[J]. 工程力学, 2017, 34(1): 51 − 57. Dong Xiaoli, Zhao Chenggang, Zhang Weihua. The saturated dense sand elastic-plastic model considering phase transition state [J]. Engineering Mechanics, 2017, 34(1): 51 − 57. (in Chinese)
[39] Zervoyannis C. Etude synthétique des propriétés mécaniques desargiles saturées et des sables sur chemin oedométrique et triaxial derévolution [D]. Paris: Ecole Centrale des Arts et Manufactures, 1982.
-
期刊类型引用(3)
1. 田伟,李旭,孙赞. 高大模板支撑体系设计与施工控制策略研究. 工程技术研究. 2022(20): 203-205 . 百度学术
2. 王永祥,张涛,王静怡,倪瑞远,曾愉,钟楚欣,韩子凡. 基于FAHP法的超高超重支模架施工风险识别及防范研究. 建筑施工. 2020(07): 1326-1329+1347 . 百度学术
3. 陆萍,陈盈,李云开,吴海军. 基于雅申理论的混凝土模板侧压力计算模型及实验研究. 工程力学. 2019(08): 201-209 . 本站查看
其他类型引用(2)