EXPERIMENTAL STUDY ON THE EFFECT OF STRUCTURAL SIZE ON THE SEISMIC PERFORMANCE OF SQUARE CFST SHORT COLUMNS
-
摘要: 为了研究在低周往复荷载作用下结构尺寸对方钢管混凝土短柱抗震性能的影响,对6根方钢管混凝土短柱开展了水平往复加载试验,分析了截面尺寸对柱破坏形态、滞回曲线、骨架曲线以及不同抗震性能指标(如刚度退化、耗能能力、延性等)的影响,阐明了不同截面尺寸对柱名义抗剪强度的影响规律和机制,研究结果表明:不同截面尺寸的试件破坏形态基本相同,表现为柱底部钢管鼓曲、核心混凝土被压碎的破坏形态;当截面尺寸由200 mm增至600 mm时,在不同加载方向上,方钢管混凝土短柱名义抗剪强度分别下降了63.1%(59.8%),表现出显著的尺寸效应;随着截面尺寸增大,相对名义刚度与平均耗能系数呈降低趋势;JIN等提出的考虑尺寸效应的抗剪强度公式计算值与试验值吻合良好,说明考虑尺寸效应的方钢管混凝土柱抗剪承载力计算公式能够较为准确的预测其抗剪承载力。Abstract: In order to study the seismic performance of square concrete filled steel tubular (CFST) short columns, a total of 6 specimens with different cross-sectional sizes were tested under combined constant axial loading and cyclic lateral loading. The failure mode, hysteretic curves, skeleton curves and seismic performance indexes (e. g. stiffness degradation, energy dissipation, ductility, et al.) with different cross-section sizes were analyzed. Meanwhile, the nominal shear strength of specimens with different cross-section sizes was studied. The results indicate that the final failure modes, i.e., the bulge formed a complete ring on each side and the core concrete crushed at the same location, are similar for all columns with different cross-sectional sizes. The decline of nominal shear strength can be observed obviously as the structural size increases, i.e. the nominal shear strength decreases by 63.1% and 59.8% as the cross-section size varies from 200 mm to 600 mm under two opposite loading directions, indicating an obvious size effect; the relative nominal stiffness and the average energy dissipation coefficient decrease with the increase of structural size. The predicted values of shear strength formula that considers the size effect agree well with the tested values, implying this formula can be used to evaluate the shear capacity of square CFST short columns.
-
-
表 1 试件基本参数
Table 1 Basic parameters of specimens
试件编号 B/mm t/mm B/t L/mm n CFST-ST-1/2 200 4 50 400 0.4 CFST-SF-1/2 400 8 50 800 0.4 CFST-SX-1/2 600 12 50 1200 0.4 注:B为横截面宽度;t为钢管厚度;L为试件有效长度;n为轴压比。 表 2 钢材材性表
Table 2 Material properties of steel
组别 ta/mm Es/GPa fy/MPa fu/MPa μ 1 3.91 277.16 356.28 495.07 0.27 2 7.91 245.78 325.99 486.93 0.29 3 11.80 242.75 338.96 536.25 0.28 注:ta为拉伸试件的平均厚度;Es为弹性模量;fy和fu分别为钢材屈服强度和抗拉强度;μ为泊松比。 表 3 不同破坏形态下方钢管混凝土短柱水平承载力
Table 3 Lateral bearing capacity of square CFST stocky with different failure modes
试件编号 水平承载力/kN Vm Vs Ve CFST-ST 404.4 379.6 431.0 CFST-SF 1617.7 921.2 951.0 CFST-SX 3639.7 1283.5 1509.6 注: V m为发生压弯破坏时的水平承载力;Vs为发生弯剪破坏时的水平承载力;Ve为试验水平承载力的平均值。表 4 试件抗剪承载力计算值与试验值
Table 4 Calculation and test result of shear capacity of columns
试件编号 Vue1(正向)/kN Vue2(反向)/kN Vup.Jin/kN[31] Vup,China/kN[21] Vup,America/kN[22] Vup,Europe/kN[23] CFST-ST-1 419.98 423.92 430.51 105.02 139.69 132.51 CFST-ST-2 442.09 446.23 430.51 105.02 139.69 132.51 CFST-SF-1 951.83 961.63 913.20 419.13 553.57 541.03 CFST-SF-2 950.21 938.31 913.20 419.13 553.57 541.03 CFST-SX-1 1456.70 1509.42 1593.33 1396.89 1245.40 1225.83 CFST-SX-2 1558.30 1512.59 1593.33 1396.89 1245.40 1225.83 注:Vue1和Vue2为试验中柱正向加载和反向加载的峰值承载力;Vup.Jin为文献[31]中计算方法的计算值;Vup,China、Vup,America、Vup,Europe为根据中国规范、美国规范和欧洲规范得到的横向承载力的计算值。 -
[1] 郝际平, 黄育琪, 樊春雷, 等. 带约束拉杆壁式钢管混凝土柱拟静力试验研究[J]. 工程力学, 2021, 38(12): 39 − 48. doi: 10.6052/j.issn.1000-4750.2020.11.0821 HAO Jiping, HUANG Yuqi, FAN Chunlei, et al. Quasi-static tests of walled concrete-filled steel tubular columns with binding bars [J]. Engineering Mechanics, 2021, 38(12): 39 − 48. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0821
[2] YANG L G, WANG Y Y, ELCHALAKANI M, et al. Experimental behavior of concrete-filled corrugated steel tubular short columns under eccentric compression and non-uniform confinement [J]. Engineering Structures, 2020, 220: 111009.
[3] 徐礼华, 宋杨, 刘素梅, 等. 多腔式多边形钢管混凝土柱偏心受压承载力研究[J]. 工程力学, 2019, 36(4): 135 − 146. doi: 10.6052/j.issn.1000-4750.2018.02.0090 XU Lihua, SONG Yang, LIU Sumei, et al. Study on the eccentric compressive bearing capacity of polygonal multi-cell concrete filled steel tubular columns [J]. Engineering Mechanics, 2019, 36(4): 135 − 146. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.02.0090
[4] 范重, 王倩倩, 李振宝, 等. 大直径钢管混凝土柱抗震性能试验研究及承载力计算[J]. 建筑结构学报, 2017, 38(11): 34 − 41. doi: 10.14006/j.jzjgxb.2017.11.004 FAN Zhong, WANG Qianqian, LI Zhenbao, et al. Experimental study on seismic behavior of CFST column with large diameter and calculation of bearing capacities [J]. Journal of Building Structures, 2017, 38(11): 34 − 41. (in Chinese) doi: 10.14006/j.jzjgxb.2017.11.004
[5] WU B, PENG C W. Shear performance of thin-walled steel tube infilled with precast segments containing DCLs [J]. Journal of Constructional Steel Research, 2020, 167: 105862.
[6] 柯晓军, 苏益声, 商效瑀, 等. 钢管混凝土组合柱压弯性能试验及承载力计算[J]. 工程力学, 2018, 35(12): 134 − 142. doi: 10.6052/j.issn.1000-4750.2017.09.0717 KE Xiaojun, SU Yisheng, SHANG Xiaoyu, et al. Strength calculation and eccentric compressive test of steel tube-reinforced concrete composite columns [J]. Engineering Mechanics, 2018, 35(12): 134 − 142. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.09.0717
[7] SAKINO K, TOMII M. Hysteretic behavior of concrete filled square steel if the Japan tubular beam columns failed in flexure [J]. Transactions of the Architectural Institute of Japan, 1981, 3: 439 − 446.
[8] MORISHITA Y, TOMII M. Experimental studies on bond strength between square steel tube and encased concrete core under cyclic shearing force and constant axial force [J]. Transactions of the Architectural Institute of Japan, 1982, 4: 363 − 370.
[9] VARMA A H, RICLES J M, SAUSE R, et al. Seismic behavior and modeling of high-strength composite concrete-filled steel tube (CFT) beam-columns [J]. Journal of Construction Steel Research, 2002, 58(5): 725 − 758.
[10] 吕西林, 陆伟东. 反复荷载作用下方钢管混凝土柱的抗震性能试验研究[J]. 建筑结构学报, 2000, 21(2): 2 − 11. doi: 10.3321/j.issn:1000-6869.2000.02.001 LYU Xilin, LU Weidong. Seismic behavior of concrete-filled rectangular steel tubular columns under cyclic loading [J]. Journal of Building Structures, 2000, 21(2): 2 − 11. (in Chinese) doi: 10.3321/j.issn:1000-6869.2000.02.001
[11] 韩林海, 游经团, 杨有福, 等. 往复荷载作用下矩形钢管混凝土构件力学性能的研究[J]. 土木工程学报, 2004, 37(11): 11 − 22. doi: 10.3321/j.issn:1000-131X.2004.11.003 HAN Linhai, YOU Jingtuan, YANG Youfu, et al. Behavior of concrete-filled steel rectangular hollow sectional columns subjected to cyclic loading [J]. China Civil Engineering Journal, 2004, 37(11): 11 − 22. (in Chinese) doi: 10.3321/j.issn:1000-131X.2004.11.003
[12] 游经团, 韩林海. 钢管高性能混凝土压弯构件滞回性能试验研究[J]. 地震工程与工程振动, 2005, 25(3): 98 − 103. YOU Jingtuan, HAN Linhai. Experimental study on high-performance concrete filled steel tubular column subjected to cyclic loading [J]. Earthquake Engineering and Engineering Vibration, 2005, 25(3): 98 − 103. (in Chinese)
[13] HAN L H, YANG Y F, TAO Z. Concrete-filled thin-walled steel SHS and RHS beam-columns subjected to cyclic loading [J]. Thin-Walled Structures, 2009, 41(9): 765 − 780.
[14] VARMA H A, RICLES J M, LU W L. Seismic behavior and design of high-strength square concrete-filled steel tube beam columns [J]. Journal of Structural Engineering, 2004, 130(2): 169 − 179. doi: 10.1061/(ASCE)0733-9445(2004)130:2(169)
[15] HAN L H, TAO Z, YAO G H. Behavior of concrete filled steel tubular members subjected to shear and constant axial compression [J]. Thin-Walled Structures, 2008, 46(7): 765 − 780.
[16] 解咏平. 钢筋混凝土柱抗震性能尺寸效应试验研究[D]. 北京: 北京工业大学, 2013. XIE Yongping. Size effect on seismic behavior of reinforced concrete columns [D]. Beijing: Beijing University of Technology, 2013. (in Chinese)
[17] 李振宝, 郭二伟, 周锡元, 等. 大尺寸RC梁柱节点抗震性能及尺寸效应试验研究[J]. 土木工程学报, 2012, 45(7): 39 − 47. LI Zhenbao, GUO Erwei, ZHOU Xiyuan, et al. Seismic behaviors and size effects of large-scale interior beam-column joints of RC frames [J]. China Civil Engineering Journal, 2012, 45(7): 39 − 47. (in Chinese)
[18] 于春义. 高强混凝土柱抗震性能尺寸效应试验研究[D]. 北京: 北京工业大学, 2019. YU Chunyi. Size effect of seismic behavior of high strength concrete columns [D]. Beijing: Beijing University of Technology, 2019. (in Chinese)
[19] 王文静. 大尺寸圆形钢管混凝土轴心受压性能及尺寸效应[D]. 北京: 北京工业大学, 2007. WANG Wenjing. Size effect on axial compression performance of full-scale circular concrete filled steel tube [D]. Beijing: Beijing university of technology, 2007. (in Chinese)
[20] 陈鹏. 圆钢管混凝土轴压短柱尺寸效应研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. CHEN Peng. Research on size effect of axially loaded circular concrete-filled steel tubular stub column [D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
[21] GB 50936−2014, 钢管混凝土结构技术规范[S]. 北京: 中国建筑工业出版社, 2014. GB 50936−2014, Code for seismic design of buildings [S]. Beijing: China Architecture & Building Press, 2014. (in Chinese)
[22] ANSI/AISC 360-16, Specification for structural steel buildings [S]. Chicago, USA: American Institute of Steel Construction, 2016.
[23] EN1994-1-1, Eurocode4: Design of composite steel and concrete structures, Part 1-1: General rules and rules for buildings [S]. Brussels: European Committee for Standardization, 2004.
[24] GB/T 228.1−2010, 金属材料拉伸试验 第1部分: 室温试验方法[S]. 北京: 中国标准出版社, 2011. GB/T 228.1−2010, Metallic materials-tensile testing-Part 1: Method of test at room temperature [S]. Beijing: Standards Press of China, 2011. (in Chinese)
[25] GB/T 50081−2019, 普通混凝土物理力学性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2019. GB/T 50081−2019, Standard for test methods of concrete physical and mechanical properties [S]. Beijing: China Architecture & Building Press, 2019. (in Chinese)
[26] GB 50010−2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2015. GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture & Building Press, 2015. (in Chinese)
[27] WANG Y Y, CHEN P, LIU C Y, et al. Size effect of circular concrete-filled steel tubular short columns subjected to axial compression [J]. Thin-walled Structures, 2017, 120(11): 397 − 407.
[28] 蔡绍怀. 现代钢管混凝土结构(修订版)[M]. 北京: 人民交通出版社, 2003. CAI Shaohuai. Modern steel tube confined concrete structures (revised edition) [M]. Beijing: China Communications Press, 2003. (in Chinese)
[29] YASUI N. Elasto-plastic analysis for local buckling behavior of circular tubes under axially cyclic loading [J]. Journal of Structural and Construction Engineering, 2001, 543: 161 − 181.
[30] WU B, PENG W C, ZHAO X Y. Cyclic loading tests of semi-precast circular steel tubular columns incorporating precast segments containing demolished concrete lumps [J]. Engineering Structures, 2020, 211(5): 110438.
[31] JIN L, FAN L L, DU X L, et al. Size effect of square concrete-filled steel tubular columns subjected to lateral shear and axial compression: Modelling and formulation [J]. Engineering Structures, 2020, 157: 107158.
[32] BAZANT Z P, KIM J K. Size effect in shear failure of longitudinally reinforced beam [J]. Journal of American Concrete Institute, 1984, 81(5): 456 − 486.
-
期刊类型引用(3)
1. 傅向荣,陈璞,孙树立,袁明武. 弹性力学有限元分析中的平衡与协调理论. 工程力学. 2023(02): 8-16 . 本站查看
2. 谢凌洁,肖映雄,徐亚飞. 重力坝问题的非结构分层四边形高阶亚参元分析. 应用力学学报. 2021(03): 902-908 . 百度学术
3. 李忠学,胡万波. 用于光滑/非光滑壳的稳定化新型协同转动4节点四边形壳单元. 工程力学. 2020(09): 18-29 . 本站查看
其他类型引用(5)