中厚板问题的多变量小波有限元法

黄义, 韩建刚

黄义, 韩建刚. 中厚板问题的多变量小波有限元法[J]. 工程力学, 2005, 22(2): 73-78.
引用本文: 黄义, 韩建刚. 中厚板问题的多变量小波有限元法[J]. 工程力学, 2005, 22(2): 73-78.
HUANG Yih, HAN Jian-gang. THE MULTIVARIABLE WAVELET FINITE ELEMENT METHOD FOR THICK PLATE PROBLEMS[J]. Engineering Mechanics, 2005, 22(2): 73-78.
Citation: HUANG Yih, HAN Jian-gang. THE MULTIVARIABLE WAVELET FINITE ELEMENT METHOD FOR THICK PLATE PROBLEMS[J]. Engineering Mechanics, 2005, 22(2): 73-78.

中厚板问题的多变量小波有限元法

详细信息
  • 中图分类号: O242;TU339

THE MULTIVARIABLE WAVELET FINITE ELEMENT METHOD FOR THICK PLATE PROBLEMS

  • 摘要: 提出了一种基于二类变量广义变分原理的多变量小波有限元方法。首先构造了便于边界条件处理的插值小波基,应用乘积型二元插值小波基来构造中厚板的广义变量场函数,通过二类变量广义变分原理建立了多变量小波有限元模型。在计算各种变量时,不需要利用其物理关系,也不必求导,可直接计算其结果,因而各种变量均有足够的精度。
    Abstract: A multivariable wavelet finite element method (FEM) is presented, which is based on Hellingger-Reissner variational principle. The interpolating wavelet bases are constructed in order to deal with boundary conditions conveniently, and two-dimensional interpolating wavelet bases in product form are used to construct the generalized field functions of thick plate. In calculating variables the stress-strain relations and the differential calculation are bypassed, resulting in high variable accuracy.
计量
  • 文章访问数:  809
  • HTML全文浏览量:  29
  • PDF下载量:  306
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-06-07
  • 修回日期:  2003-10-14
  • 刊出日期:  2005-03-14

目录

    HAN Jian-gang

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回